

"POLNA" S.A.

37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

PRODUCT CATALOGUE

AUTOMATIC CONTROL ENGINEERING and HEAT ENGINEERING

SINGLE-PORTED GLOBE CONTROL VALVES THREE-WAY CONTROL VALVES DOUBLE-PORTED CONTROL VALVES ROTARY PLUG CONTROL VALVES PISTON DESUPERHEATERS MINIMUM FLOW VALVES SELF-ACTUATING PRESSURE REGULATORS NEEDLE AND MANIFOLD VALVES

Certificate

Standard

ISO 9001:2008

Certificate Registr. No. 0198 100 00434

TÜV Rheinland Polska Sp. z o.o. certifies:

Certificate Holder:

Zakłady Automatyki POLNA S.A. ul. Obozowa 23 PL - 37-700 Przemyśl

Scope:

regulating valves, actuators, self-operating pressure controllers, strainers, central lubrication equipment and hydraulic control devices, distillers, iron and steel castings

An audit was performed, Report No. 0 00434. Proof has been furnished that the requirements according to ISO 9001:2008 are fulfilled.

Validity:

The certificate is valid from 2012-11-26 until 2015-11-25. First certification 1995

Warszawa, 2012-11-20

Guzegove Guabka

TÜV Rheinland Polska Sp. z o.o. ul. 17 Stycznia 56 02-146 Warszawa

www.tuv.com

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

"POLNA" S.A.

23 Obozowa Street, 37-700 Przemyśl, POLAND

Phone: +48 16 678 66 01 Fax: +48 16 678 65 24 +48 16 678 37 10

website:

www.polna.com.pl

	extension / mobile	phone			
The Board of Directors	200				
Sales and Marketing Director		379 / +48 693 92	0 446		
Marketing Department		248 / +48 533 301 083			
Export Department [offers and orders]		258 / +48 609 369 810			
Service		382 / +48 609 36 +48 16 678	9 265 66 25		
Sales and Marketing Specialists					
Control valves, butterfly valves complete wi	Offers	269; 389			
acutators		Orders realization	310		
Self-actuating regulators, strainers, central lubrication equipment, water distiller	rs	312			
	E-mail addresses				
Marketing and Sales Department	marketing@polna.com.pl				
Offers [domestic]	bl				
Export Department [offers and orders]					
Service					
Purchasing Department					

Dear Ladies and Gentlemen,

we are proud to present you with POLNA's great offer of a wide range of products from the automatic control engineering and heat engineering sectors, to central lubrication and laboratory equipment. We specialize in the designing and manufacturing of control valves, steam desuperheaters, needle valves, regulators, central lubrication equipment, distillers and re-distillers.

We aim at fulfilling the Customer's needs. Our traditions date back over 80 years, which enhances the determination for constant improvement of our products, processes and everything that we do within our team and in the whole organization.

It is our mission to ensure:

- the highest quality and reliability of products for our Customers,
- a stable increase of the company's goodwill for our Shareholders,
- the feeling of security and opportunities for development for our Employees,
- business responsibility (protection of the natural environment and social interests).

Designing and manufacture of individual products is based on complete realization of the technical assumptions agreed on with the Customer. We are constantly broadening our offer of non-catalog products, aimed at individual needs of our recipients.

Kind regards Andrzej Piszcz

The President of the Management Board, Executive Director

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

Our Company

Zakłady Automatyki POLNA S.A. is a company with a long tradition. It has been producing industrial fittings since the end of the 1960s. Over the years, the range of manufactured products has been systematically broadened and the construction solutions used have been improved. The current trademark has been used since 1972 and products bearing that trademark are well known among domestic and foreign customers.

Apart from standard catalogue products, POLNA specializes in special manufactures of valves adjusted to individual Customers' requirements.

Our customers include some of the leading companies from various branches of industry:

- o ALSTOM POWER power industry
- o SYNTHOS DWORY– chemical industry
- o SIEMENS automatic control
- o Polish Oil & Gas Company (PGNiG) gas industry
- o ORLEN petrochemical industry
- o FOSTER WHEELER power industry
- o AUSTRIAN ENERGY power industry
- o SKODA POWER power industry

The quality of POLNA's products is guaranteed by Quality Management System certificates it holds: - Quality Management System Certificate of Conformity with EN ISO 9001:2008 norm.

- Quality Assurance System Certificate of Conformity with Directive 97/23/EC Module H.
- Quality Assurance System Certificate of Conformity with Directive 97/23/EC Annex I, p.4.3.
- We confirm compliance of control valves and actuators with ATEX Directive 94/9/EC.

More information about the company, its certificates and its product offer can be found on our website: <u>www.polna.com.pl</u>.

PRZEMYŚL- Think it over and come!

Przemyśl belongs to a select group of the oldest and most beautiful Polish towns. A thousand years old, tempestuous history of the town has been inseparably intertwined with the history of the whole Republic of Poland. It is located in the south-east corner of Poland, in the eastern part of Podkarpackie Voivodeship and in the valley of the river San. Przemyśl, together with its surroundings, has many tourist, recreation and historical virtues. The town also constitutes an important transport interchange, connecting the East with the West and the North with the South of Europe. Besides, it plays an important role in transboundary cooperation with Ukraine.

Industrial values

Przemyśl has got a direct connection with the transit route Wrocław – Kraków – Korczowa (A4 and Road no.4). The last section of the motorway from Kraków to the Ukrainian border (currently road no. 4), which 20 km before Przemyśl turns into the dual carriageway no. 77, leading to Medyka, is planned to be finished by 2012.

The closest airport is located in Jasionka near Rzeszów (appr. 90 km from Przemyśl). The airport off ers national and international air connections (including cheap airlines).

In industrial part of town is located PRZEMYŚL SUB-ZONE OF TARNOBRZEG SPECIAL ECONOMIC ZONE EURO-PARK WISŁOSAN (TSSE), www.tsse.pl.

Tourist values

Welcome to Przemyśl! It is a beautiful and unique town. Mother nature herself took care of the picturesqueness nature of this part of the country, and its attractive location makes it possible to reach the Bieszczady highlands,

the tourist routes of Pogórze Przemyskie, as well as the great city of Lvov, situated less than 100 kilometres from Przemyśl. For many centuries communication routes between East with West and North with South have crossed here, thanks to which the town was formed, Walking along its narrow streets, you can touch ten centuries of the town's history with numerous material traces, almost a thousand of which have been registered as construction and architectural monuments.

Being situated at the meeting point of cultures and religions of the East and West has resulted in a national diversity and rich cultural heritage, developed by generations of Polish, Ukrainian and Jewish communities.

The periods of the Polish partitions and the reign of the Austro-Hungarian monarchy contributed to the very special nature of the town.

The Fortress of Przemyśl

The strategic location of Przemyśl induced the Austrian authorities to commence a construction of a huge fortress in the 19th century that played a significant role during WWI. Its presence, attractiveness and fame directed the tourist development of the town under the promotional name "Tourist Town Przemyśl Fortress". The town attracts many tourists and lovers of fortifications with its ruins of massive forts and war cemeteries. Enthusiasts of militaria and fortification mysteries will surely find the bunkers of the Molotov Line attractive.

Active and cultural tourism

Przemyśl is one of the rare towns, in the centre of which you can sunbathe by the San River in the middle of summer and ski during winter down the 800-metre lit slope, equipped with ski-lift. Tourists, who appreciate the beauty of nature and landscapes, are fascinated with history, multiple cultures

and prefer active leisure will surely feel wonderful here.

Natural sights, plenty of which can be found in Przemyśl and the Foothills, may be considered as combining ACTIVE AND CULTURAL tourism. The most valuable of these is Arboretum in Bolestraszyce (7 km from the town). Here you can see rare species of trees and bushes from all over the world. In the manor house dating back to the 19th century the Institute of Physical Geography was established.

Castles, Cathedrals, Churches...

The very location of Przemyśl, at the meeting point of cultures and religions, and their mutual inter-penetration, led to a unique effect in the form of abundant monuments of sacral, secular and military architecture, expressed in almost a thousand registered construction and architectural objects. The centre of the town is especially rich in historical buildings. The Casimir Castle dating back to the 14th century, with pallatium and rotunda of the turn of 10th and 11th centuries, remains of the fortified walls, Reformati Monastery and Benedictine Nunnery with churches of 16th century, Franciscan and Carmelite monastery complexes from the Baroque period, as well as many bourgeois town houses. The Market Square and narrow streets are the most frequently visited places in the town The good condition of these historical objects, clear signs, numerous

leaflets, folders and guides has made it possible to move freely in this attractive area of the town. The very centre of the Old Town has its own "underground town". The majority of buildings have basements and underpasses, which are often interconnected.

Tatar Mound (Kopiec Tatarski) and the "Zniesienie" citadel

Unique mounds only found in the Małopolska region of Poland – in Cracow and, particularly numerous, in Przemyśl area – will probably remain an archaeology mystery forever. The time of their creation is unknown; the Tatar Mound (Kopiec Tatarski) was a mystery as early as in the 16th century. The mound is worth visiting, since there is a wonderful view from this highest point in the area. Nearby, there are ruins of the citadel fort XVI "Zniesienie". Even nowadays can we see steel rails here: the tracks on which huge mortars used to turn around.

Przemyśl is a beautiful, interesting and unique place. It is worth coming to stay here.

Details of Company issuing the	Request for Proposal/Offer
Company	
Adress	
Contact	
person	
Fax	
E-mail	
lechnical data necessary fo	or creating a valve offer:
Flow max [t/h, Nm³/h, itp.]	
² · Inlet Pressure p ₁ [bar, MPa, itp.]	
Outlet pressure p ₂	
or pressure drop on Valle (p ₁ -p ₂)	
4. Working fluid	
5. Fluid temperature (°C)	
6. Tightnes class	
7. Flow characteristics [P,L,S]	if the second seco
Additional Information Type or t	, if they are known: he actuator:
Pneumatic P (normally open) or R (no	rmally close)
8.	or
Electric	
9. Accesories to pn	eumatic actuators:
9a. Pneumatic or electropneumatic positioner	
9b. Air set (with filter)	
9c. Electromagnetic valve 3/2	
9d. Limit switches	
9e. Other	
10. Body material	
11. Pipeline [Dz/g]	
Please send the filled in for sales@polna.com.pl, fa tel. +48 16678 6	rm to the e-mail address: ax +48 16678 65 24 56 01 ext. 258
www.polna	.com.pl
Download this questionnaire from: http://www.polna.com.p	l/en/catalogues-and-products.html

							t no.												
	POLNAS A 37-700 Przemysl, ul. Obozowa 23 CONTROL VALVES							facturer seria	number										
	_															User s	serial number		
-	1		Place of installation						57		Manufact	urer					Туре		
	2		Function					<u> </u>	58		Pneumati	ic			Diaph	iragm	type P	iston type .	
	3		Explosion hazard zone					-	59		Operation	n		Mariahan	Unilat	.eral		Bilateral .	
	4		Arriblenit temperature min max					-	60		Size			Membra	ne worl	king ar	rea		
;	2		Allowed not	se level					-	61	£	Stroke / r			min				,
	7	_		Intilication no.	1	Wall thickness	mm		┢	62	ATO	Input sign	al range		mm			max	
	, R	01	Pineline ma	Iterial		Wai trickiess				64	CTU	input sigi	airange						
	9	EC.	Pineline ins	ulation		Thermal	Acou	stic		65	4	Air conne	ection						
	0	ESE	r ipeline ins	alation		Thermai	Acou	300		66		Other act	uators			electri	ic	hydraulic	hand operated
1	1	/ALV	Pipeline cor	nections						67		0.101 000	lactoro			0.000		nyaraano	
1	2	OR	Working me	edium						68		Handwhe	el			Тор			Lateral
1	3		Working me	edium at outlet		fluid stear	n gas			69									
1	4	DER								70		Manufact	urer					Туре	
1	5	ISNC			mi	n norm	max	unit		71		Input sigr	nal			pneur	natic	•	electric
1	6	с ш	Flow							72		Valve ope	en at						
1	7	<u>п</u>	Inlet pressu	re P1						73	VER	Valve clo	sed at						
1	8	RS	Outlet press	sure P2						74	NLE	Operation	n			unilate	eral		bilateral
1	9		Temperatur	re T1						75	OITIO	Characte	ristics			linear			
2	20	RAN	Medium der	nsity at inlet P1	or M					76	POS	Air conne	ections						
2	1	LPA	Evaporatior	n pressure Pv						77		Accessor	ies			by-pa	SS		manometers
2	2	NICA	Critical pres	sure Pc						78		Explosion	n-proof executi	on		spark	-safe		explosion safe
2	3	ECH.	Kinematic v	iscosity						79								1	
2	4	F.	Specific hea	at y						80	6	Manufact	urer					Туре	
2	5		Compressit	bility coefficient	<u>Z</u>				<u> </u>	81	CHE	Switch ty	ре			mech		approx.	pneum.
2	6								<u> </u>	82	MIT	Switch po	osition			closed	đ	% stroke	open
2	27		Pressure with valve closed P1 P2				83	AIT S	Switch op	peration			open			close			
2	8		Supply air pressure min max					-	84		Explosior	n-proof executi	on		spark	-safe		explosion-safe	
2	9		Valve status	s w/o supply		open close	d susp.		-	00		Manufact						Tune	
	1	_	Max colouid	tod flow ratio K	.,				┢	00		Ivianuiacu	urei					туре	
3	2	З	Min calculat	ted flow ratio K	v				┢	88	NE	Valve typ		hua		2-way		3-way	4-way
3	3	Selected catalogue Ky					-	89	VAL	vaive sup	opiy tallure sta	tus		open		closed	susp.		
3	4	Calculated noise level dB(A)						90	NOID	Air conne	ection					Connection	size		
3	5		Manufactur	er	Type		(-)			91	OLEN	Electric p	arameters		V		Hz	W	
3	6	Body type						92	õ	Explosion	n-proof executi	on		spark	-safe		explosion-safe		
3	7	Flow direction						93				-							
3	8	Nominal pressure						94		Reduc	cing valve	Manufa	acturer			Туре			
3	9		Nominal siz	es						95		with fi	Iter			with n	nanom	neter	
4	0	ľ	End connec	tions	flanged	flangeless weld	ding thr	eaded		96		Locati	ion transmitter	Manufa	acturer			Туре	
4	1	[97	IES								
4	2		Extended c	onnections						98	SOR	Pneur	natic booster	Manufa	acturer			Туре	
4	3		Bonnet type	9	standard	extension bellow	v seal TA-	Luft		99	CES								
4	4	Ę								100	AC	Blocki	ing valve	Manufa	acturer			Туре	
4	5	л Э	Body / bonr	net material		1			<u> </u>	101									
4	6	/ALV	Valve plug -	- valve seat unit		standard silend	ced			102		Pulse tub	es					material	
4	.7		Characteris	tics		linear equa	l percentage	on/off		103									
4	8		Valve plug /	valve plug ster	n material		1		-	104		Attestatio	ins			chemi	ical an	nd mechanica	I tests
4	9		Guiding sie	eve / valve seat	material		1		-	105	INTS	Ouner exa	aminations			la a di d			h = 14 = / 4 =
5	1		\/-b				0		-	100	EME	Certificati	es			body/	bonne	et	bolts/nuts
5	2	ł	Valve plug	ype valve seat unit	hardening coat	ing	SOT	[107	QUIF					vaive	piug-v	aive seat un	t
5	3		raite plag	vario ocar ant	nardoning ood					109	- RE								
5	4		Tiahtness c	lass						110	CIAL								
5	55 Packing PTFE graphite .					1	111	SPE											
5	6		g			<u> </u>		-		112									
Comr	nent	s:																	
									Des	ign			Fig. no.						
L							<u> </u>		Item	۱			Offer request	t no.					
Change Date Name Change Date Signature		Order no. Item no. No. of pcs.																	

Download this questionnaire from: www.polna.com.pl

"POLNA" S.A.

37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

Page

CONTENT

TECHNICAL INFORMATION

1.	Products of automatic control engineering	 1
2.	Harmful phenomena in the work of valves.	 11
3.	Non-catalog production	 15

AUTOMATIC CONTROL ENGINEERING PRODUCTS

4.	Single-ported globe control valves type Z	27
5.	Control valve type Z with quick closure circuits for gases	43
6.	Single-ported globe control valves type Z1A	47
7.	Control valves type Z1A - Design solutions for special applications	65
8.	Single-ported cage control valves type Z1B	69
9.	Control valves type Z1B - Design solutions for special applications	89
10.	Single-ported globe control valves type Z2	93
11.	Three-way control valves type Z3	100
12.	Rotary plug control valves type Z33	108
13.	Rotary plug control valves type Z33 with piston and rotary actutation	120
14.	Double-ported control valves type Z10	123
15.	Single-ported globe control valves type ZH	129
16.	Butterfly valves type PRS	133
17.	Piston desuperheaters type ST-1	141
18.	Minimum flow valve type ZM1 and Z1B-M	145
19.	Diaphragm multi-spring pneumatic actuators type P/R	149
20.	Diaphragm multi-spring pneumatic actuators type P1/R1	153

HEAT ENGINEERING

TECHNICAL INFORMATION

HEAT ENGINEERING PRODUCTS

22.	Self-actuating pressure reducing regulators type ZSG 1	159
23.	Self-actuating pressure relief type ZSG 3	163
24.	Self-actuating differential pressure reducing regulators type ZSG 5	167
25.	Self-actuating differential pressure reducing regulators with flow reduction type ZSG 6	171
26.	Self-actuating differential pressure relief regulators type ZSG 7	175
27.	Self-actuating flow regulators type ZSG 8	179
28.	Self-actuating differential pressure and flow regulators type ZSG 9	183
29.	Self-actuating pressure reducing regulators type ZSN 1	187
30.	Self-actuating pressure reducing regulators type ZSN 2	191

	Page
31. Self-actuating pressure relief regulators type ZSN 3	195
32. Self-actuating differential pressure reducing regulators type ZSN 5	199
33. Self-actuating differential pressure reducing regulators with flow reduction type ZSN 6	203
34. Self-actuating differential pressure relief regulators type ZSN 7	207
35. Self-actuating flow regulators type ZSN 8	211
36. Self-actuating differential pressure and flow regulators type ZSN 91; 92	215
37. Strainers for heating systems type FS-1	219
38. Needle valves type ZA	221
39. Manifold valves type ZB	229
40. Needle valves type ZWD 1	233
41. Needle valves type ZWZ 11	237

8

9

PRODUCTS OF AUTOMATIC CONTROL ENGINEERING - TECHNICAL INFORMATION

CONTENT

CONTENT	Page
Introduction	1
Design versions	2
Material executions	3
Nominal pressure	3
Flow ratio	4
Flow characteristics	4
Internal tightness	5
Bonnet, types and packings	6
End connections, types	7
Hardening of valve internal parts	7

INTRODUCTION

Fluid flow ratio regulation appliances, which keep the required regulation characteristics, are critical in industrial automatics systems. The main component of such appliances are controllers, which adjust the resistance for flowing fluid, and drives (actuators), which provide mechanic energy required in setting of controllers.

The following are representatives of this group of appliances, manufactured by Zakłady Automatyki POLNA SA:

Drive selection

Harmful effects in valve operation

- globe and angle control valves,
- three-way control valves,
- butterfly valves.

Regarding the type of drive, controllers are manufactured in following executions:

- with spring diaphragm pneumatic actuators,
- with electric and electro-hydraulic actuators,
- with pneumatic piston actuators,
- with hand operated drive.
- without drive. •

Regarding the fact that valves are the largest group of controllers, the expression "valves" is hereinafter often interchangeable with expression "controllers".

While selecting valves for specific working conditions one should consider the following aspects:

- 1. valve design version,
- 2. material execution,
- 3. nominal pressure,
- 4. flow coefficient,
- 5. flow characteristics,
- 6. internal tightness,
- 7. bonnet type and packing,
- 8. body connection types,
- 9. hardening of valve internal parts,
- 10. selection of drive,
- 11. harmful effects in valve operation.

1. DESIGN VERSIONS

The design version aspect applies only to valves.

Valves can be subdivided using the following criteria:

- a) position of body inlet and outlet
 - globe,
 - three-way,
 - angle,
- b) closing component

C)

e)

- with linear motion valve plug,
- with rotary motion valve plug,
- shape of closing component
 - profile valve plug,
 - perforated valve plug,
 - multi-stage valve plug,
- cage valve plug,
- d) balancing of axial forces
 - unbalanced,
 - balanced,
 - reversibility of operation
 - reversible design double-ported valves,
 - irreversible design single-ported valves.

Globe valves with linear situation of input and output are the basic, most common group of valves. Three-way valves are used in installations where mixing or separation of fluid is required. Angle valves are preferred option in applications where flashing (evaporation) and large pressure drops occur. A variation of angle valves are " T" valves, with parallel but not axial body ends.

Rotary plug globe valves are recommended in cases of large flows and demand for precise adjustment in the beginning of opening. Perforated (perforated) components are used mostly to reduce noise emissions. Multi-stage valve plugs reduce cavitation and choked flow.

In cage valves there is a piston valve plug, working with perforated control cage. They are used for large pressure drops applications.

Pressure balancing of valve aims at equalization of static pressure on both sides of valve plug, by means of balance holes or internal valve plug (pilot).

For selection of the valve balancing method the following factors must be taken into account:

a) plug - pilot

- flow direction above the plug (Flow To Close FTC),
- high leakage class (V class),
- enhanced rangeability,
- limited possibility to manufacture two-stage plugs to apply throttling cages.

b) balancing and relieving holes in the plug

- flow direction under the plug (Flow To Open - FTO), - max. leakage class (IV class),

- plug sealing subjects to wearing - it must be replaceable, - possibility to manufacture multi-stage plugs to and apply throttling cages.

Reversibility of valve operation denotes possibility of changing its function (pressing the valve plug stem can cause opening or closing of valve) in the consequence of different assembly of valve internal parts.

While selecting valve design one should consider the following aspects:

leakage class

Single-ported valves are more tight than double-ported ones.

balancing of axial forces

Double-ported valves require smaller resetting forces and allow transferring of larger pressure drops than in the case of single-ported valves with same actuators.

flow coefficient

Single-ported valves feature better possibility of flow reduction, whereas double-ported valves and rotary plug valves feature better flow coefficients than single-ported ones, with same valve diameter.

nominal pressure

Irreversible valves are used in applications with higher nominal pressure than in the case of reversible valves. • fluid viscosity

It is recommended, that single-ported valves are used with dense fluids, with viscosity v>10⁻⁵ [m²/s], where laminar flow may be observed.

2. MATERIAL EXECUTIONS

Material execution is determined by material in which body is executed. Basic material executions of the body casts:

- cast iron:	EN-GJL 250,	per PN-EN 1561
 spheroidal iron: 	EN-GJS-400-15,	per PN-EN 1563
	EN-GJS-400-18LT,	per PN-EN 1563
- carbon steel:	GP240GH, (1.0619),	per PN-EN 10213-2
	G20Mn5, (1.6220)	wg PN-EN 10213-3
	WCB,	per ASTM A216
- alloy steel:	G17CrMo9-10, (1.7379),	per PN-EN 10213-2
-	WC9,	per ASTM A217
 stainless steel: 	GX5CrNiMo19-11-2, (1.4408),	per PN-EN 10213-4
	CF8M,	per ASTM A351

Criteria for selection of material:

- corrosion proofness,
- working temperature,
- nominal pressure,

requirements of technical specifications (AD 2000 Merkblatt, WUDT-UC, ASME Code)

Material corrosion proofness depends on type of fluid, its temperature, concentration, etc. It is to be assessed base don generally available tables and recommendations, or information by valve manufacturer. Relationship between working temperature and pressure are illustrated in tables in catalog product charts. Minimum operating temperature for all materials is -10°C.

There is a possibility of lowering operating temperature, as below:

- 40°Cfor spheroidal irons, EN-GJS-400-18LT,- 60°Cfor carbon steels, GP240GH, (1.0619) i WCB,- 90°Cfor carbon steels G20Mn5, (1.6220),
- -196 °C for stainless steels, GX5CrNiMo19-11-2, (1.4408) i CF8M, provided that:
- design pressure is reduced respectively,
- results of impact strength tests at working temperature are positive,
- heat treatment (stress relieving) of casting is performed.

Requirements of AD 2000 Merkblatt specification, sheet A4, do not allow pressure equipment execution in grey iron, with exception of products executed under Article 3.3 of Pressure Equipment Directive in accordance with Technical Specification WUDT-UC.

3. NOMINAL PRESSURE

Nominal pressure is a dimensionless marking of maximum operating pressure at ambient temperature, preceded with PN or CL symbol.

Control valves are executed in following nominal pressures:

PN6; 10; 16; 25; 40; 63; 100; 160; 250; 320; 400

CL150; 300; 600; 900; 1500; 2500 PN20; 50; 110; 150; 260; 420 Pressures PN20...420 are equivalent to CL150...2500. per PN-EN 1092-1, DIN2548, DIN2549, DIN2550, DIN2551, PN-H-74306, PN-H-74307 per ANSI/ASME B16.5, PN-EN 1759-1 per PN-EN 1759-1, PN-ISO 7005-1

4. FLOW RATIO

Flow coefficient Kv is the stream of water in $[m^3/h]$, with temperature 5°C to 40°C, flowing through the valve, at pressure drop 1 [bar], for specific stroke of valve.

Kv coefficient describes minimum hydraulic resistance of valve. Familiarity with Kv coefficient allows to directly determine valve nominal size DN and diameter of pipe the valve is to be connected to.

Many different Kv values can be obtained for same nominal sizes DN, in the consequence of application of reduced passages of valve seats. Nominal (catalog) value of flow coefficient is marked Kvs.

Relationships between flow coefficient, flow rate and pressure drop for various states of aggregation and flow conditions can be determined using formulas on page 5.

Said formulas allow approximation of Kv coefficient. They however do not account for effects of fluid viscosity, change in density of flowing fluid, critical flow, etc. For more details refer to PN-EN 60534-2-1 "Industrial-process control valves. Flow capacity-sizing equations for fluid flow under installed conditions.

It is advised that DIVENT valve calculation and calculation program is used, which can be downloaded from the following website

www.polna.com.pl

To ensure correct work of automatic controls and to avoid oversizing of the valve, adopted catalog value of flow coefficient is to be higher than calculated. It is assumed that maximum value of calculated flow coefficient is to be achieved within the 70...90% range of valve plug stroke.

5. FLOW CHARACTERISTIC

Valve flow characteristics is the relation between flow value and closing component stroke. Regarding pressure drop we can divide characteristics into internal and working characteristics.

Internal characteristics describes relation between relative flow coefficient "kv" and relative stroke "h" at constant pressure drop in valve, where:

$$k_{v^{\pm}} \quad \frac{K_{v}}{K_{v100}} \qquad \qquad h = \frac{H}{H_{100}}$$

Working characteristic describes change in flow in function of stroke at variable pressure drop in valve, in installation conditions.

Valves have the following flow characteristics:

- linear "L"
- equal percentage "P"
- modified "M"
- quick opening "S"

Valve characteristic is obtained by proper design of fluid flow area between valve choking components regarding the stroke. This function is realized through contoured valve plugs or perforated components (perforated valve plugs, control cages):

- <u>linear characteristic</u>: equal increase in relative stroke "h" correspond with equal increase in relative flow coefficient "kv".

$$k_{v} = k_{v0} + m \cdot h$$

where: k_{v0} is a minimum controlled relative flow ratio,

$$k_{v0} = \frac{K_{v0}}{K_{vs}}$$

m - characteristic inclination

For POLNA valves: $k_{vo} = 0,02; m = 1$

- equal percentage characteristic: equal increase in relative stroke "h" corresponds with equal per cent increase in relative flow coefficient "kv"

$$k_{v} = k_{v0} \cdot e^{n \cdot h}$$

where: n is characteristic inclination drawn in semi-logarithmic coordinates (h, lg kv).

$$n = ln \frac{1}{k_{vo}} = ln \ 50 = 3,912$$

- <u>modified characteristic</u>: is a characteristics in between "L" and "P", created for individual needs and specific installations. It mostly is of equal percentage nature at the beginning of stroke (h=0...0.3) and linear in the subsequent part of stroke.

- <u>quick opening characteristic</u>: used for "open-close" on-off operation; it allows achievement of nominal flow at low stroke (h=0.6...0.7) and increase in flow coefficient by ca. 20% regarding catalog value, at full stroke.

Selection between value with equal percentage and linear characteristics depends on requirements concerning changes in flow rate and pressure on valve.

With small changes in flow rate during valve operation, up to 50%, selection of characteristics has no material effect to performance of control system. However for valves operating at large changes in flow rate, with variable pressure drop, and in case of doubt selection of constant per cent characteristics is recommended.

Valves with linear characteristics are recommended for systems, where pressure drop on valve is independent from flow rate, e.g. control of fluid level.

Valve plugs with quick opening characteristics are designated exclusively for on-off operation. Limitations in application of perforated components are due to their susceptibility to contaminants suspended in fluids, hence the need for their permanent filtering.

Flow type	Fluid	Gas	Steam
Subcritical $p_2 \rangle \frac{p_1}{2}$	$K_{\rm w} = \frac{Q}{Q} \sqrt{\rho_1}$	$K_{v} = \frac{Q_{N}}{504} \sqrt{\frac{\rho_{N} \cdot T_{1}}{\Delta p \cdot p_{2}}}$	$K_{\nu} = \frac{G}{31.6} \sqrt{\frac{\nu_2}{\Delta n}}$
$\Delta p \langle \frac{p_1}{2}$	$31,6 \sqrt{\Delta p}$	$K_{\nu} = \frac{G}{504} \sqrt{\frac{T_1}{\rho_N \cdot \Delta p \cdot p_2}}$	51,0 Y ±
Supercritical $p_2 \langle \frac{p_1}{2} \rangle$	$K = \frac{G}{31,6} \sqrt{\frac{1}{\rho_1 \cdot \Delta p}}$	$K_{v} = \frac{Q_{N}}{252 \cdot \rho_{1}} \sqrt{\rho_{N} \cdot T_{1}}$	$K_{\nu} = \frac{G}{31,6} \sqrt{\frac{2\nu}{\rho_1}}$
$\Delta p \rangle \frac{p_1}{2}$		$K_{v} = \frac{G}{252 \cdot \rho_{1}} \sqrt{\frac{I_{1}}{\rho_{N}}}$	

(0°C, 760
p)
,

- [kg/m³] fluid density in normal conditions
- $\begin{array}{c} \rho_{_{N}} \\ T_{_{1}} \\ v_{_{2}} \end{array}$ - fluid temperature before agent [K]
- $[m^3/kg]$ specific volume of steam for parameters p_2 and T_1 $[m^3/kg]$ - specific volume of steam for parameters ($p_1/2$) and T₁

mm Hg)

Three way and rotary valve plug valves feature linear characteristics, whereas butterfly valves feature characteristics similar to equal percentage characteristics in the range of opening angles 0°...60° (Fig. 2).

6. INTERNAL TIGHTNESS

Maximum leakage of closure by valve choking components ("plug - seat") is described in leakage classes as per PN-EN 60534-4.

Leakage class	Allowed leakage
II	- 5 • 10 ⁻³ Kvs
IV	- 10 ⁻⁴ Kvs

V VI

3 • 10 ⁻⁴ • ∆p•D [cm³/min]

		-
1	[blister/	min

 $d_0 D = 25$

			uo D = 25			
Allowable leakage [blister / min.]	Seat diameter D [mm]		Allowable leakage [bubble / min.]	Seat diameter D [mm]		
1	25		6	80		
2	40		11	100		
3	50		27	150		
4	65		45	200		

Checking the internal tightness is carried out as part of acceptance tests of the product with the use of air with pressure 3...4 [bar] (for valves in classes II, IV and VI) and with water with working pressure conforming to the order (for valves in class V).

Valves in class VI have seats (single-seat valves) or plugs (two-seat valves) equipped with packing rings made of PTFE reinforced with glass fibre.

Because of durability of the packing material, pressure drop on the valve must not exceed 35 bar.

Valves in class V require careful and laborious fitting of closing elements and a greater disposition force of the drive.

Another acceptance criterion is the norm PN-EN 12266-1 "Industrial valves. Testing of metallic valves. Part 1: Pressure tests, test procedures and acceptance criteria. Mandatory requirements."

The following can be used as test media:

• Air (for pressure 6 bar),

• Water (for pressures $1, 1 \cdot \Delta p_{max}$).

Acceptable leakage [mm³/s] can be calculated for the given class according to the following formulas:

Medium	Class A	Class B	Class C	Class D	Class E	Class F	Class G
Water	0	0,01 · D	0,03 · D	0,1 · D	0,3 · D	1,0 · D	2,0 · D
Air	0	0,3 · D	3,0 · D	30 - D	300 - D	3000 - D	6000 - D

where: Δp [bar] - working pressure drop

D [mm] - valve seat diameter

Internal tightness is checked during acceptance tests, using air at pressure 3...4 [bar] for valves of class II, IV, VI, and using water at working pressure as per order, for valves of class V.

Class VI valves valve seats (single-ported valves) or valve plugs (double-ported valves) are equipped with PTFE seal ring reinforced with glass fiber. Due to durability of sealing material pressure drop on valve cannot exceed 35 bar.

Class V valves require precise and time-consuming fitting of valve closing components and higher available force of drive.

7. BONNETS, TYPES AND PACKINGS

Bonnet is a pressure equipment used to contain and seal the component (valve plug stem, shaft) transmitting motion from drive to closing component.

Bonnet can be integral part of body or be separated from body.

Control valves are fitted with following types of bonnets:

- standard bonnet

- extension bonnet

- bellow seal bonnet

The basic criterion in selection of bonnet is fluid temperature. Extension bonnets are used in both high and low temperatures. There is a execution of extension bonnet specially designed for cryogenics (temperatures up to -196°C).

Bellow seal bonnets ensure absolute internal tightness and they are used mostly for aggressive media. Standard bellow seal bonnets can be used up to pressure 35 bar. Application for higher pressures require to use multi-layer bellows.

Cast iron valves are only fitted with standard bonnet. Control valves DN150...250, PN160...CL2500 can be equipped with self-sealing bonnets. Type of valve plug stem packing in bonnet depends on temperature and type of fluid. In majority of cases PTFE rings with graphite are applied. Pure graphite packing is recommended for steam and high temperature operations. Such packing does not require lubrication, although they do require adjustment during operation, due to relaxation and wearing-off.

Among maintenance-free packings are PTFE-V and TA Luft packings. PTFE-V ones are executed in PTFE in the form of V-profile rings, pressed to sealed surfaces with spiral spring. TA Luft packing comprises two kits of seal rings loaded with package of disk springs, and compliant in terms of tightness requirements of TA Luft:2002, Clause 5.2.6.4, and VDI 2440:2000.

8. END CONNECTIONS, TYPES

Body connections are used to connect valve to pipeline and they should provide tightness, pressure resistance, vibration resistance and pipeline deformations. Valves are executed with following types of connections:

- flanged,
- flangeless,
- welding.

Flanged connections are executed as per European (PN-EN 1092-1, PN-EN 1092-2, PN-EN 1759-1, DIN 2548, DIN 2549, DIN 2550, DIN 2551, PN-ISO 7005-1, PN-H-74306, PN-H-74307) and American (ANSI/ASME B16.5) standards.

Regarding sealing surface type flanges can be executed with:

- raised face type B1, B2, B, RF
- groove, type D, D1, GF, DL
- recess type F, F1, FF
- ring-joint, type J, RTJ

Rotary plug valves and butterfly valves have flangeless connections of Sandwich type. Body is fitted between pipeline counter-flanges by means of bolted ends.

Valves with welding connections are designed for butt welding, BW type, or socket welding, SW type. Pipe dimensions and body lengths specified in catalog apply to execution of connections from body casting. Application of smaller pipe dimensions is limited due to minimum internal diameter of pipe that can be achieved from casting (D1 min). In such case reduction stub is to be welded to body, which shall cause elongation of valve body by 100 mm (DN15...50), 150 mm (DN80, 100), 200 mm (DN150) and 300 mm (DN200, 250) – in case of stubs fixed on both sides of the valve.

9. HARDENING OF VALVE INTERNAL PARTS

In standard execution valve internal parts: valve plugs, valve seats, valve plug stems, cages, guiding sleeves are executed in high-alloy austenitic steel X6CrNiMoTi 17-12-2 (1.4571) as per PN-EN 10088-1.

In order to improve mechanical and chemical resistance to fluid the following hardening methods of internal parts are used: stelliting, nitriding, heat treatment, protective coatings.

Stelliting hardens the surface down to ca. 1 mm, to hardness of ca. 40 HRC. Stelliting can be applied to sealing phases of valve plug and valve seat, or additionally valve plug trim surfaces, openings of valve seats and guiding sleeves, valve plug stem friction surfaces.

Plugs with the diameter smaller than 10mm can be made of solid stellite.

Nitriding (CrN) consists in hardening of component surfaces down to ca. 0.1 mm, to hardness of ca. 900HV, in the effect of plasma or diffusion processes. Nitriding is recommended for application with surfaces exposed to friction or erosion. Heat treatment is applied in order to achieve high durability and resistance to wear. Depending on the material type hardness achieved is up to 45 HRC (1.4057) or 55 HRC (1.4125). Composite protecting coatings (BELZONA) are applied on body internal surfaces in order to protect them from erosion (flashing, abrasive fluids).

Hardening of valve internal parts is recommended in the following cases:

• handling of erosive fluids,

- wet gas or saturated steam,
- dry, pure gas

(Δp > 25 bar (up to DN100), Δp > 12 bar (DN>100)),

- chocked flow,
- initial cavitation: (liquid Δp > 10 bar, temp. > 315°C).

Contraindications for stelliting

• boiler water pre-treated with hydrazine,

• perforated components,

10. SELECTION OF DRIVE

Valves and butterfly valves can be equipped with spring diaphragm pneumatic actuator, piston actuator, electric actuator, electro-hydraulic actuator, handwhell, or no drive at all.

Equipment without drives can be completed by end user with other types of actuators, such as springless diaphragm pneumatic, piston pneumatic acutator, crank actuator, and others, provided that such actuators are adapted to connection with valve bonnet and valve plug stem.

Hand operated equipment is mostly used for applications requiring on-off regulation.

While selecting spring diaphragm pneumatic actuator the following is to be determined:

- actuator type,
- actuator size,
- spring range,
- supply pressure,
- stroke,

• requirements concerning accessories.

Selection of pneumatic actuator (whether direct or reverse action) depends on equipment operation control signal failure. Whether the valve is to stay open or closed on control signal failure is the technical requirement of installation.

Actuator size, spring range and supply pressure are to be taken from tables in catalog, depending on required available force of actuator.

Available force of actuator is to be lower than Fs calculated using the below formula:

$$F_{s} = 0,785 \cdot 10^{-4} \cdot \Delta p \cdot D^{2} + F_{d}$$

where: F_s [kN] - available force

 $\Delta \tilde{p}$ [bar] - pressure drop on closed valve

D [mm] - valve seat diameter

 ${\rm F_{d}}\left[kN\right]$ - tightening force

Values D and Fd are to be taken from catalog charts, and Δp from order.

Disposition force of type "P" actuators - F_{sP} [kN] is dependent on the active flank of the actuator A [cm²], supply pressure p_{z} [kPa] and the final spring travel p_{z} [kPa].

$$F_{SP} = 10^{-4} \cdot A \cdot (p_{Z} - p_{2})$$

Disposition force of type "R" actuators – F_{sR} [kN] is dependent on the active flank of the actuator A [cm²] and the initial spring travel p₁ [kPa].

$$F_{SR} = 10^{-4} \cdot A \cdot p_1$$

Disposition forces F_{sp} and F_{sR} calculated that way are established without consideration of friction force of movable elements (spindle of the actuator and the valve) or tolerances of spring manufactures, hence they should be treated with a 20% reserve regarding those factors.

The calculations refer to single-seat valves type Z, Z1A and Z1B in a closed position.

Catalog charts provide allowable pressure drops for various pneumatic actuators and various internal leakage classes of valves.

Those values apply to single-ported valves, unbalanced, with fluid fed under the valve plug (FTO). With fluid fed above the valve plug (FTC) allowable pressure drop may be higher, however such an arrangement causes valve plug hitting the valve seat when closing and disturbances to control. Hence it is used mostly in on-off operations, with actuator equipped with higher stiffness springs. For valves with valve plug unbalanced it is assumed that available force Fs is at least equal to tightening force for class V leakage.

In the case of double-ported valves it is not possible to procure a table of allowable pressure drops, due to dynamic forces occurring, which depend on i.a. actual flow conditions (pressure, fluid type, valve plug type, valve operation type). In case when knowledge of forces acting on double-ported valve plug stem is required, please contact manufacturer, stating all the data related to valve operation.

Pneumatic actuator accessories may comprise the following:

- · top-mounted or side-mounted handwheel,
- positioner: pneumatic, electro-pneumatic with analog or digital signal (smart positioner),
- air set,
- three-way solenoid valve,

- position transmitter,
- limit switches,
- lock-up valve,
- volume booster,
- quick exhaust valve.

Handwheel is applied in case of control signal failure, as well as to limit valve stroke.

Application of positioners is recommended in following cases:

- for systems requiring large pressure drops on valve,
- for high working pressure,
- for valves of nominal diameter DN > 100 mm,
- for distance between valve and reducing valve exceeding 50 m,
- for three-way valves,
- for systems requiring high-speed action,
- · for viscous or highly contaminated fluids sedimenting on valve seat,
- for media of temperature higher than 250°C or lower than -20°C,
- when spring range does not correspond with range of out signal from controller.

Designation of accessories:

- filter reductor is used to reduce supplying pressure to required value and to clean incoming air.
- solenoid valve assists remote switching of control circuit on and off.
- position transmitter is used to reflect position of valve plug stem in the form of unified pneumatic (e.g. 20...100 kPa) or electric (e.g. 4...20 mA) signal.
- limit switches are used to signal preset positions of actuator stem.
- lock-up valve is used to block valve plug stem movement in current position with control signal missing.
- volume booster is used to accelerate actuator time of action.
- quick drain valve allows to reduce actuator chamber drainage time.

11. HARMFUL EFFECTS IN VALVE OPERATION

Harmful effects in valve operation, such as noise, cavitation, choked flow, flashing, are discussed in the study titled "Harmful phenomena in the work of valves".

NOTES:

HARMFUL PHENOMENA IN THE WORK OF VALVES. - TECHNICAL INFORMATION

The flow of medium through the valve (depending on the kind and parameters of the medium) may cause phenomena having a negative impact on the environment and be destructive to the product's durability. Risk factors should be diagnosed in detail in order to be used for actions aimed at limiting or eliminating their negative influence.

Harmful phenomena connected with the flow include the following factors:

- Noise
- Cavitation
- Evaporating (flashing)
- · Choked flow

The conditions in which the above-mentioned phenomena occur are explained by the following graphs:

 p_{vc} - pressure in the "vena contracta" zone,

p, - pressure of evaporating.

Medium flowing through valve shall invariably cause noise.

Adverse effect of noise is due to its harmful effect to health and working environment. Noise is also the symptom of processes inside the valve, generally reducing durability of appliance, including damage.

Noise level is measured in [dBA] units, 1 m from the pipeline surface and valve axis, in the direction to medium outlet.

Human ear is most sensitive to frequencies 3000 to 4000 Hz. Allowable workplace noise level depends on duration of exposure. For continuous work it is 85 dB(A), for short exposures, say 15 minutes a day, it is up to 115 dB(A). 3 dB(A) difference means double increase in noise level; hence two appliances generating 82 dB(A) are equivalent to one appliance generating 85 dB(A). Noise level drops by 3 dB(A) with each doubling of distance from pipeline.

Sources of valve noise emissions may be as follows:

- mechanic noise,
- aerodynamic noise,
- hydrodynamic noise.

Mechanic noise may be caused by vibrations of valve internal parts, resonance, misguiding of moving parts, excessive clearance. One of the methods to eliminate such noise is application of cage construction and selection of proper clearances to valve working conditions.

Fig. 1. Valve for high pressure and high temperature operation

In Fig. 1 a valve is shown designated for operation at temperatures up to 500°C, with possibility of thermal shocks. Valve plug is guided in valve seat and in cage. Application of steel spring ring allows increase of clearance between valve plug and cage without causing vibrations and loss of tightness. Mechanic vibrations can also be reduced through change in valve plug weight and direction of medium flow.

Aerodynamic noise is generated when mechanic energy of compressible medium flow is transformed to acoustic energy. Source of noise is increase in flow speed due to medium decompression, often exceeding speed of sound.

Noise reduction can be achieved by means of using proper installation (insulation on outlet pipeline, increased thickness of pipeline walls), or by means of selecting proper valve construction. The most important and most efficient way is to apply in valve perforated control structures in the form of perforated valve plugs (Fig. 2) or cages (Fig. 3).

Fig. 2. Perforated valve plug

Fig. 3. Perforated control cages

Splitting of a single stream to multitude of smaller, well adjusted streams, causes reduction in noise emission as high as by 10 dB(A), due to following:

- reduction in efficiency of mechanic to acoustic energy transformation,

- smaller spin causes generation of higher frequency energy, which is easier to damp by walls and insulation,

- high frequency sound (> 10 000 Hz) is less harmful to human ears.

Another way of reducing aerodynamic noise (by ca. 5 dBA) is reduction in medium outflow speed at outlet. The most common method of doing so is increasing the outlet pressure by application of choking structures in the form of perforated cages and plates, and application of diffusers. In cases of high noise level it is often necessary to apply all those solutions at the same time (Fig. 4).

Fig. 4. Valve for compressible media to operate in noise and choked flow

Fig. 5. Damage of valve due to cavitation

Fig. 6. Damage of valve due to flashing

Hydrodynamic noise is generated by flow of fluids, and its sources can be as follows:

- turbulent flow interacting with valve and pipeline walls,
- cavitation,
- evaporation (flashing).

Cavitation consists in local, usually in vena contracta area, evaporation of fluid due to pressure drop below evaporation pressure p_v . Then, due to valve outlet pressure increase to value $p_2 > p_v$, implosion of generated steam bubbles occurs. In addition to noise, such a phenomenon features sudden accelerations and blows of two-phase mixture (fluid-steam), and resulting damages (Fig. 5) to valve or pipeline surfaces.

Should outlet pressure stay lower than evaporation pressure ($p_2 < p_v$) fluid is permanently turned to mixture of fluid and steam, with steam share depending on pressure and temperature.

This phenomenon is called evaporation (flashing).

Then sudden increase in flow volume and speed occurs. Mixture stream erodes internal valve surfaces (Fig. 6) and pipeline, and is the source of noise as well. The most harmful phenomenon is however cavitation. Its effect can be reduced by means of application of proper materials and surface hardening technologies on one hand, and application of design methods for elimination or controlling of cavitation on the other hand.

Another proven methods are: improving valve plug and valve seat durability by stelliting their phases or whole trims, diffusion or plasma nitriding, allowing achievement of surface hardness 950 HV to the depth of ca.0.1 mm, or through hot-setting to hardness 55 HRC. The basic design solution of anti-cavitation valves is execution with multi-stage valve plug (Fig. 7). The concept behind that solution is possibility of achieving pressure drops on each stage below critical value. It is however difficult to achieve effective choking on individual stages at the beginning of valve opening. In such cases we use contoured and perforated multi-stage valve plugs, with active structures which resistance depends on valve opening, and passive structures, in the form of cages and perforated plates (Fig. 8).

Although occurrence of flashing depends only on flow parameters, and cannot be eliminated through design changes, its damaging effects can - and have to – be eliminated.

In addition to above discussed methods of improving durability of valve components, POLNA offers also application of hardening coatings on internal valve body surfaces, and application of valves fitted with anti-corrosion bushing (Fig. 9); angle valves (Fig. 10); and valves with protective cage (Fig. 11).

All above noise reduction methods applied in control valves by Zakłady Automatyki POLNA SA in Przemysl, are tailored to Customers' needs.

We design our valves after thorough analysis of phenomena occurring in flow process, based on detailed data and using specialized computer software DiVent and CONVAL[®]. Not only do our designs meet all standards, but also they solve problems the Customer's are unaware of.

CONVAL[®] software has a Polish version, made by our own company, and contains data about the POLNA product offer.

www.polna.com.pl

NON-CATALOG PRODUCTION

Zakłady Automatyki "POLNA" S.A. in Przemyśl have been operating non-stop since 1899.

Since 1960s, nineteen sixties, its many production programs can be divided into four product groups:

- automatic control engineering (industrial automation)
- heat engineering
- central lubrication equipment and systems
- laboratory equipment: water distillers.

The biggest product group consists of automatic control engineering products.

This production started in 1967, when a licence for control valves and pneumatic actuators was purchased from MASONEILAN company – one of the world leaders in this industry.

In subsequent years work continued on post-license works developing and expanding the range of and varieties of products, as well as developing its own designs for the needs and requirements of the market.

Such work led to the creation of a big offer of valves and pneumatic actuators within the Company's catalog. The product range consists of valves ranging in size from DN15 up to 300 and with nominal pressure from PN6 – 400 and with flow coefficients from Kvs 0,01- 6,300 and with cast bodies made from various materials:

• globe valves, passage, single-port valves with linear motion of the plug:

Types Z, Z1A, Z1B, Z2,

• globe valves, passage, double-port valves with linear motion of the plug:

Type **Z10**,

• globe valves, passage, single-port, with rotary-plug:

Туре **Z33**,

• globe valves three-way valves with linear motion of the plug:

Туре **Z3**,

• tight butterfly valves, lined:

Type **PRS**,

• diaphragm, pneumatic, multi-spring actuators:

Type **P/R**, **P1/R1**, **P5/R5**.

Over the last tens years, the importance of non-catalog products has increased, as they are designed and too the the requirements of the client and the technological needs of their project.

At present, the share of the automatic control engineering products now exceeds 30% of production, thus the necessity of presenting them in more detail.

1. Valves constructed using forged elements.

The use of forgings in pressure elements of valves enables the use of this product to work in the highest burdens in terms of pressure, temperature and the corrosive environment, which is only achieved thanks to the proper selection of materials and construction solutions.

Depending on the needs, we manufacture valves with various construction solutions: angle, passage, passage/angle ($_{\pi}$ ² shaped with parallel, non-axial ends) and three way valves.

POLNA also offers a whole range of connections for pipelines; flange (made to EN and ANSI standards) for BW welding, direct for the body, flange-less and others.

The material used for the body is chosen depends on the working pressure during maximum working temperature. The most commonly used materials are:

• S355J2G3 (1.0570),

• 13CrMo4-5 (1.7335),

• 14MoV6-3 (1.7715),

• X10CrMoVNb9-1 (1.4903)) and others.

2. The Elimination or restriction of harmful effects related to flow.

The flow of substances through a valve, depending on it's type and parameters can cause such phenomena as high noise, cavitation, evaporation (flashing), choked flow and erosion levels, that could have a negative impact on the environment, reducing the regulatory values of the valve and having a negative impact on the product's durability.

To avoid such an impact these factors should be analyzed in detail. These actions are mainly focused on restricting the speed flow and the division of total pressure reduction on the valve into a few steps, so that the pressure reductions do not exceed critical levels.

Multihole elements (plugs, cages, plates), are in common use, and their main role being to limit noise levels. The division of pressure is achieved by means of resistance structures within the valve, such as multi-stage plugs, cages and throttling plates.

Reduction of flow speed is achieved by division of pressure reduction on the valve and/or application of enlarged outflow diameter in the valve's body or expanding elements (diffusers).

An important role is played by the proper choice of materials and the ways of increasing hardness of internal valve elements. We often utilize hardened surfaces using stelliting, plasma or diffusion nitriding, heat enhancing and protective coating.

All these factors will only fulfill their role if work conditions are known, valves are constructed properly with the skills and knowledge of our long experience.

The opinions of POLNA product users prove that we can design and manufacture valves completely fulfilling even the very highest of their requirements.

3. Valves designed for work in aggressive or dangerous environments.

POLNA produces valves for work with dangerous substances such as oxygen, hydrogen, natural gas, acidic gases containing H₂S and in dangerous environments where there are risks of explosions.

The preparation consists of the careful cleaning of surfaces coming into contact with the substance using both mechanical and chemical means, as well as using materials and ways of production and control complying with safety regulations.

Products intended for work in atmospheres with high risk of explosion are manufactured in compliance with the ATEX directive.

4. Products adapted to the specifics of particular industries.

Every branch of industry has its own characteristics, which have to be taken into consideration in the phase of designing, manufacture and control of automatic control engineering.

For products designed for power industry, the possibility of the occurrence of high temperature and pressure, thermal shocks, choked flows and excess noise must be taken into consideration.

POLNA has some tried and tested applications of product especially designed for various uses in power industry, such as:

- boiler feed valves, also fulfilling the role of starting valves,
- reducing and cooling stations with integrated injection in a pressure reducing valve,

• elements of reducing and cooling stations with integrated steam pressure reducing valves, desuperheaters, injection valves.

Pressure reducing valves, passage and angle models, with balanced plugs, eliminating choked flow, with a vast range of flow regulation.

Piston, ring, lance and steam-atomizing desuperheaters.

Anti-cavitation injection valves.

- minimum flow valves used as pump by-pass valves,
- condensate piling valves
- three-way valves for power industry applications.

For products designed for the gas and petrochemical industry, chemical resistance, it is important to take account of resistance to high pressures, flow speeds and significant temperature changes, as well as protection of the environment and work safety.

Products include:

- pressure reducing valves for significant changes of flow values,
- valves eliminating choked flow and limiting noise,
- valves working in low temperature environments (e.g. in Siberia),
- deposit water valves,
- high-pressure natural gas valves,
- valves used in cryogenics,
- anti-cavitation valves and valves resistant to erosion (flashing) for gas mines, stamping presses and gas distribution plants.

5. Valves complying with boiler regulations.

Basic valve products refer to production in accordance with the 93/27/EC pressure directive , concerning the fixing on pipelines.

POLNA also has the capability of manufacturing valves designed for vessels, in accordance with PL-EN 12952-3:2004 norm ("Water-tub boilers and auxiliary installations – Part 3: Design and calculation for pressure parts").

6. Custom built valves manufactured to the clients requirements.

POLNA has the capability to design and manufacture valves adjusted especially for particular uses. Detailed description of requirements is key. With the use of a professional computer program CONVAL we determine phenomena occurring in particular points of a valve's work. That information, together with long-standing experience, enables us to design valves fulfilling the recipient's requirements. To mention just a few examples showing the variety of manufactures, we have made:

- valves for underground installations, with a proper solution of valve's drive,

- high-pressure control and cut-off valves for the food industry,

- a wide range of valves adjusted to work in conditions of cavitation risk. The structures of valves take into consideration the requirements concerning changes of flow values (regulatability) and reduction of pressure on the valve occurring at the change of valve's opening. Due to the uniquity of those conditions, each valve may have a structure different from the others in terms of details of technical solution.

Boiler feed valve, also fulfilling the role of a starting valve.

A cast body, material G17CrMo9-10 (1.7379), with a self-tightening bonnet. The main plug is controlled by an auxiliary plug (pilot), flow over the plug (FTC). A multi-step pilot allows to regulate small flows at big pressure reductions without the risk of cavitation occurring.

The main plug: two-step up to the middle of lift, with resistance elements (plates). When opened wider, no internal throttling; the function of filling the boiler is carried out at a small pressure reduced. A protective cage on the seat. It is highly air-tight

Reducing and cooling station.

An angle steam power reduction valve DN25 / DN150, is made of X10CrMoVNb9-1 (1.4903). A multistage plug and resistance plates on the outflow aiming at elimination of choked flow and limiting the noise levels. The cooling chamber is an integral part of the valve. A lance desuperheater, an injection valve with an anti-cavitation structure.

Steam reduction valve.

An angular body made of 13CrMo4-5 (1.7335). A self-tightening bonnet. The main plug: cage type, controlled by an auxiliary plug (pilot). A diffuser integral with the body of the valve with three resistance plates.

Piston desuperheater

Regulation scope Kvmax 10; regulatability 1:40, V class tightness in accordance with PN-EN 60534-4 standards. The valve part with a one- or two-step profile plug made of the 13CrMo4-5 (1.7335). The pipeline diameter ranges to over DN200.

Minimum flow valve.

Nominal size of the valve: DN50 PN320. It's used for flow regulation approx. 60t/h at pressure reduction of up to 200 bar. Non-bonnet design with a packing seal in the low pressure zone.

A three-step plug combined with a multi-hole sleeve creates six steps of throttling. Perfect closure tightness as a result of flow over the poppet (FTC). Adjusted to on-off function and control one, used in by-pass systems of feeding pumps.

Condensate piling valve.

It is fixed directly at the container with the outflow directed to the liquid surface, which eliminates potential destruction of the vessel's elements by cavitation and erosion.

Anti-cavitation valve.

The body is made of a forging, threaded ends. A multi-step plug, and a throttling cage. Non-service packing of stem fulfilling tightness requirements according to TA Luft. It is currently in use at the "Dębno" gas mine in Poland.

Cut-off valve.

A flange body is made of forged X2CrNiMo17-12-2 (1.4404) - 316L. material Working pressure is up to 530 bar. Two-part plug structure: an internal plug and a main plug for static relief upon the opening of the valve.. Flow over the plug (FTC), high closure tightness. This product has been designed especially for the food industry.

Anti-cavitation valve.

This product solves the problem of regulation and anti-cavitation protection at small opening of the valve. The internal plug – multi-step, the main plug – two-step, with a throttling cage in the seat. Flow over the plug (FTC).

Double-position anti-cavitation valve.

This product solves the problem of small flows during big pressure reductions and big flows at small pressure reductions, if there is a risk of cavitation in both cases. A three-step profile/piston plug, a throttling cage divided into chambers with proper throttling.

Valves for work in underground installations.

Such valves require leading the drive over ground and connecting it to the valve in a durable and reliable way. The length of distance elements and the way of fixing them to the ground must be chosen with considering the possibilities of the valve's localization.

High parameters control valve.

The body is made of forged elements with structure " ↓" DN250 PN320, Kvs320P. The material used is 13CrMo4-5 (1.7335), a self-tightening bonnet, a plug balanced by a graphite ring. Manufacture conforming to PN-EN 12952 3:2004 "Water-tub boilers".

SINGLE-PORTED GLOBE CONTROL VALVES TYPE Z®

APPLICATIONS:

Single-ported globe control valves type Z^{\otimes} are used in automatic and remote control systems to control flow of gases and liquids. Wide range of material and design versions make the valves widely sought-after in chemical industry, heat and power generation industry, paper industry, food industry, metallurgy and coal mining (versions for Western Europe market is marked: BR11).

CHARACTERISTICS:

- range of nominal sizes from DN15 to DN250 for pressure values PN10 to CL300,
- various materials of valve body cast and internal parts, adapted to specific working conditions,
- wide range of flow ratios and control characteristics,

• reduction in aggressive and toxic media emissions to environment through application of bellow seal bonnets or bonnet packings meeting requirements of TA - LUFT,

• easy assembly and dismantling of valve internal parts for maintenance and service,

• high durability and reliability due to application of top-class materials and surface improvement processes (burnishing, stelliting, heat treatment, CrN coatings),

• possibility of mating with reversible

action P/R (column) multi-spring actuators and changing the spring range with no extra parts (keeping the number of springs),

• possibility of fitting actuators with top drive,

• possibility of performing diagnostics of "valve-actuator" system due to application of smart electro-pneumatic positioners,

• high tightness of closure due to application of soft valve seats (with PTFE seals in the whole range of flows and characteristics, for valve plugs, balanced and unbalanced,

- same flow ratios and control characteristics for "hard" valve seats (metal-to-metal) and "soft" valve seats (metal-gasket), for valve plugs, balanced and unbalanced,
- reliable actuator-stem and valve seat-body connections,
- small guiding sleeve control forces due to application of balanced valve plugs in valves DN40...250,
- top-class flat and bonnet packings,
- wide range of electric actuators,
- possibility of mating with NN type hand operated drives,
- possibility of special executions for oxygen, hydrogen, gas fuels, low temperature mediums (liquid oxygen, liquid nitrogen), acid gases containing H₂S; explosive atmospheres as per 94/9/EC ATEX,
- competitive prices due to simple and functional design of valves and actuators and applied materials,
- design and production process meets the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines,

 $Z^{(R)}$ is a trademark registered with Republic of Poland Patent Office.

DESIGN AND TECHNICAL SPECIFICATION:

 Body (1):
 single-ported, flanged, cast in cast iron or cast steel.

 Nominal sizes: DN15; 20; 25; 32; 40; 50; 65; 80; 100; 125*); 150; 200; 250

 *' special execution, technical data according to individual inquiries.

 Nominal pressure:
 PN10; 16; 25; 40 (as per PN-EN 1092-1:2010 and PN-EN 1092-2:1999); CL150; CL300 (as per PN-EN 1759-1:2005).

Steel flanges CL150; CL300 are so designed that they can be assembled with flanges executed per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. Equivalent identification as per PN are: CL150: PN 20 and CL300: PN 50. Table 1. Flanged end connections

			Facing of	f flange types							
Material	Nominal pressure	Raised face	Groove	Recess	Ring - joint						
		Identification									
Grey iron	PN10; 16		-	-	-						
Spheroidal iron	PN10; 16; 25; 40		-	-	-						
	PN10; 16; 25; 40	B 2)	D	F	-						
Cast steel	CL150		-	-							
	CL300		DL (D1 1)	F (F1)	J (KIJ)						
¹) - only for	1) - only for CL300; 2) - B1 – (Ra=12.5 mm, concentric surface structure "C"), B2 – (Ra as agreed with the customer);										
	() - identification of connections as per ASME B16.5										
	Possible execution of flanges per specification and indicated standards										

Face-to-face dimensions: as per PN-EN 60534-3-1; 2000r. - Fig. no. 7 ; Table 19 and 20. Series 1 - for PN10; 16; 25; 40; series 37- for CL150; series 38 - for CL300

c) bellows (for cast steel valves).

Valve seat (4) - screwed in, with centering cone, sealing and preventing unscrewing:

• hard version,

• soft version (PTFE packing).

Valve plug stem (5) - burnished or quenched and tempered, polished sealing contact surface **Drain plug** (6) - steel or stainless steel: allows cleaning of body interior (delivered separately) **Body gasket** (7) - asbestos-free:

• flat – aramid and hardened graphite (1.4571); in metallic casing (1.4571), multiple edges

• bonnet: - packings formed in various materials (PTFE-V; PTFE+graphite;

expan ded graphite; braided graphite);

- with TA Luft compression springs (PTFE-V; graphite)

Table 2. Packing types with application ranges.

		Temperature ['C]						
Packing	PN / CL	Bonnet						
		Standard	Standard Extension					
PTFE-V			100 40					
PTFE + Graphite		-46+200	-19040	-100+200				
PTFE-V / TA-LUFT	PN10CL300		+200+300					
Graphite		.200 .200	200 450	.200				
Graphite / TA-LUFT		+200+300	+300+430	+200+400				

Leakage class:

basic:
 bubble-tight

Class IV as per PN-EN 60534-4 - hard valve seat Class VI as per PN-EN 60534-4 - soft valve seat

Table 3. Listing of components with materials

Item	Compon	ent	Materials								
1	Body		EN-GJL 250 (EN-JL 1040)	EN-GJS 400-18 LT (EN-JS 1025)	GP 240 GH (1.0619)	WCB	GX5CrNiMo 19-11-2 (1.4408)	CF8M			
		DN15100		S 355 J2G3	(1.0570)		X6CrNiMoTi 17-1	2-2 (1.4571)			
2	Bonnet	DN125250	EN-GJL 250 (EN-JL 1040)	EN-GJS 400-18 LT (EN-JS 1025)	GP 240 GH (1.0619)	WCB	GX5CrNiMo 19-11-2 (1.4408)	CF8M			
					X6CrNiMoTi 17	-12-2; (1.4571)					
3	Plug			X6Crl	JiMoTi 17-12-2; (1.4571) + stellite +	- CrN				
				X17CrNi 16-2 ; (1.4057) + heat treatment							
					X6CrNiMoTi 17	-12-2; (1.4571)					
4	Seat			Xb	CrNINOTI 17-12-2	2; (1.45/1) + Stell	Te C				
				X1	7CrNi 16-2: (1 40	57) + heat treatme	nt				
X1007 10 2 (11007) 10 10 10 10 10 10 10 10 10 10 10 10 10											
5	Stem			X6Crl	JiMoTi 17-12-2; (1.4571) + stellite +	- CrN				
				X17	7CrNi 16-2 ; (1.40)57) + heat treatme	ent				
6	Drain pl	ug		S 355 J2G3	(1.0570)		X6CrNiMoTi 17-1	2-2; (1.4571)			
7	Body gas	ket		in metal casing X	6CrNiMoTi 17-12	-2 (1.4571) ; NOV	ATEC PREMIUM;				
					6CrNiMoTi 17-12	-2. (1 4571) + CrN					
8	Guidina sl	eeve		X6Crl	JiMoTi 17-12-2: (1.4571) + stellite +	- CrN				
X17CrNi 16-2 : (1.4057) + heat treatment											
9 Compression plate C45 (1.0503); X30Cr13 (1.4028); X6CrNiMoTi 17-12-2; (1.4571)											
10	Bolt			8.8			A4 - 7	0			
11	Nut			8			A4 - 7	0			
12	Packin	g		PI	FE + GRAFIT; PT	FE - "V"; GRAPHIT	E				
13	Spring	J			12R10 (S	SANDVIK)					
14	0-ring				Fluorine ru	bber (FKM)					
				Х	6CrNiMoTi 17-12	2-2; (1.4571) + CrN	 • · · ·				
15	Guiding sl	eeve		X6CrNiMoTi 17-12-2; (1.4571) + stellite + CrN							
16	Cool rin			X17CrNi 16-2; (1.4057) + heat treatment							
17	Ballow	,		FIFE + AUGINIMUTI T	V60rNiMoTi 17	12 2: (1 4571)	/1011 17-12-2 (1.4571)				
17	Deliov		1	Relevant materials	etandarde	-12-2, (1.4071)					
	Material			There vant materials	Standardo	dard					
	EN-GIL 250 · (EN-II	1040)			PN-FN	11561					
EN	-GJS 400-18 LT : (EN	I-JS 1025)			PN-EN	1563					
	GP 240 GH : (1.06	519)	PN-EN 10213-2								
	WCB		ASTM A 216								
G	X5CrNiMo 19-11-2 ;	(1.4408)	PN-EN 10213-4								
	CF8M	· · · ·	ASTM A 351								
	S 355 J2G3 ; (1.0	570)	PN-EN 10025								
Х	6CrNiMoTi 17-12-2 ;	(1.4571)	PN-EN 10088								
	X17CrNi 16-2 ; (1.4	4057)			PN-EN	10088					
	C45 (1.0503)		PN-EN 10083-1								
	X30Cr13 (1.402	8)	PN-EN 10088								

NOTE:

Hardening method used for hardening of valve internal parts comprises:

a) stelliting - padding of surfaces with stellite: ~40HRC

b) CrN coating – introducing chromium nitride to external layer of detail, to the depth of ca.0.1 mm;~950HV c) heat treatment: plug (~45HRC), seat (~35HRC), stem (~35HRC), guide sleeve (~45HRC)

d) Maximum working temperature -200...+250°C (for KEFLOY 25 material), higher temperatures: upon consultation with the manufacturer.

Table 5.		Materi	ial: EN-GJL	250 as per F	PN-EN 1561]	NC			· · · · r		
					Temperatu	re ['C]				1		JES	:	ad t	a see h	have ist - L'
PN	Standard	-10	120	150	180	200	230	250	300	1	1.	It is	allow	ed to	apply sp	heroidal ir
				Allowa	ble working	pressure [t	bar]			1		for t	omne	eel al	nu aciu pi	than giver
PN10		10	1	9	8,4	8	7,4	7	6	1		Tah	los 5	11	provided	that work
PN16	PN-EN 1092-2	16		14,4	13,4	12,8	11,8	11,2	9,6	1		nre	ssure	is r	educed i	respective
Table 6.		Material: EN-G	JS 400-18	LT as per PN	-EN 1563		· · · · · ·		·		1	wor	king t	empe	rature im	pact tests
					Temp	erature ['C]				1	perf	orme	, d and	d cast is	heat treat
PN	Norma	-101	120	150	20	0	2	250	300	350]	Det	ails a	are t	o be cor	nsulted w
					llowable wor	king press	ure [bar]				1	mar	nufact	urer.		
PN10		10		9,7	9,5	2	1	8,7	8	7	2.	Woi	rking	pres	sure for	intermedi
PN16	PN-EN 1092-2	16		15,5	14	,7	1	3,9	12,8	11,2		tem	perati	ure va	alues can	be calcula
PN25		25		24,3	23	3	2	1,8	20	17,5		by II	nterpo	Jialio	n.	
PN40		40		38,8	36	,8	3	4,8	32	28			1			
Table 7.	Material:	GP240GH (1.0	1619) as per	PN-EN 1021	3-2	-										
	Norma	-10 50	100	150	20	lem;	perature ["C	250	300	350		00				
TN/OL	Norma	-1050	100	150	All	owable wo	rking press	sure [bar]	300	330			-			
PN10		10	9,2	8,8	8,	3		7,6	6,9	6,4	5	i,9	1			
PN16	EN 1092-1	16	14,8	14	13	,3	1	2,1	11	10,2	e e	9,5	1			
CL150	PN-EN 1759-1	17,3	15,4	14,6	13	,8	1	2,1	10,2	8,4	6	6,5	1			
PN25	EN 1092-1	25	23,2	22	20	,8		19	17,2	16	1	4,8				
PN40	DN 54 4750 4	40	37,1	35,2	33.	,3	3	0,4	27,6	25,7	2	3,8	-			
CL300	PN-EN 1759-1	45,3	40,1	38,1	36)	3	2,9	29,8	27,8	2	5,7			,	
Table 8.		Material: G	GX5CrNiMo	19-11-2 (1.4	408) as per F	PN-EN 102	13-4		1						4	
PN / CI	Norma	-10 50	100	150	20	0	rein	250	300	350	4	00	425	450	-	
TIN / UL	Norma	1000	100	100	20	A	llowable w	orking press	ure [bar]	000			420	400	1	
PN10	51 4000 4	10	10	9	8,4	4	1	7,9	7,4	7,1	6	6,8	- 1	6,7	1	
PN16	EN 1092-1	16	16	14,5	13,	,4	1	2,7	11,8	11,4	1	0,9	-	10,7]	
CL150	PN-EN 1759-1	17,9	16,3	14,9	13,	,5	1	2,1	10,2	8,4	e	3,5	5,6	4,7		
PN25	EN 1092-1	25	25	22,7	21	1	1	9,8	18,5	17,8	1	7,1	-	16,8	-	
CL 300	PN-FN 1759-1	40	40	36,3	33,	,/	3	1,8 2.9	29,7 30.5	28,5 28,8	2	7,4	- 27.2	26,9		
T-11-0		(000) DN	12,0	00,0		,0		2,0	00,0	1		.,0		20,0	1	
Table 9.	Material: G2010115 (1.	.6220) Wg PN-1	EN 10213-3		Temperature	e ['C]				-						
PN / CL	Norma	-40	100	150	200)	2	250	300	1						
				Allowab	le working pr	ressure [[t	par]			1						
PN10		6	6	3,8	3,6	6	3	,48	3,4]						
PN16	-	16	16	10,1	9,6	6	9	,28	9,07							
PN25		25	25	15,8	15	, ,	1	4,5	14,2	{						
PIN40		40	20	20	21			20	20]			7			
Table 10.		Material: WCE	3 as per As	STM A216		Tem	nerature (°C	1					{			
PN / CL	Norma	-1050	100	150	20	0	2	250	300	350	375	400	1			
					All	lowable wo	orking press	sure [bar]					1			
PN10	EN 1092-1	10	10	9,7	9,4	4		9	8,3	7,9	7,7	6,7				
PN16	LIN 1002*1	16	16	15,6	15,	,1	1	4,4	13,4	12,8	12,4	10,8	-			
CL150	PN-EN 1759-1	19,3	17,7	15,8	14	1 7	1	2,1	10,2	8,4	7,4	6,5	-			
PN20	EN 1092-1	40	40	24,4 39.1	23,	.9	2	∠,⊃ 36	33.5	31.9	19,4 31.1	27	1			
CL300	PN-EN 1759-1	50	46,4	45,1	43,	,9	4	1,8	38,9	36,9	36,6	34,6	1			
Table 11		Material:	CE8M as	ner ASTM A	1											
		inatoriai.		per normina			Tem	perature ['C]								
PN / CL	Norma	-1050	100	150	20	00		250	300	350	375	400	425	450		
			-			A	llowable wo	orking press	ure [bar]							
PN10	EN 4000 4	8,9	7,8	7,1	6,6	6		6,1	5,8	5,6	5,5	5,4	5,4	5,3		
PN16	EN 1092-1	14,3	12,5	11,4	10,	,6	9	9,8	9,3	9	8,8	8,7	8,6	8,5		
CL150	PN-EN 1759-1	18,4	16	14,8	13,	,6		12	10,2	8,4	7,4	6,5	5,6	4,6		
PN25	EN 1092-1	22,3	19,5	17,8	16,	5	1	5,5	14,6	14,1	13,8	13,6	13,5	13,4		
PN40		35,6	31,3	28,5	26,	,4	2	4,7	23,4	22,6	22,1	21,8	21,6	21,4		
CL300	PN-EN 1759-1	48,1	42,3	38,6	35,	,ŏ	3	3,5	31,6	30,4	29,6	29,3	29	29		

Single-ported globe control valves type Z

Table	12.	Flov	w ratios I	Kvs [m³/	h] for	unb	alano	ced v	valve	plug	S									
Kvs	Stroke	Valve seat	F _D [kN]						Nom	inal siz	e DN						Char	acteria	stics
[m³/h]	[mm]	diameter D [mm]	Hard valve seat	Soft valve seat	15	20	25	32	40	50	65	80	100	125 ^{*)}	150	200	250	L	Р	S
0,010																				
0,016																				
0,025																				
0,040																				
0,063																				
0,10	1	6,35	0,1	0,16																
0,16																				
0,25																				
0,40	1																			
0,63	20																			
1,0	1																			
1,6	1	9,52	0,15	0,25																
2,5	1	407																		
4,0	1	12,7	0,2	0,3																
6,3	1	19,05	0,3	0,5																
10		20,64	0,35	0,5																
16		25,25	0,4	0,6																
25		31,72	0,5	0,8																
40		41,25	0,7	1,0																
63		50,8	0,8	1,3																
94		66,7	1,1	1,7																
125	38																			
160		88,9	1,4	2,2																
250		107,92	1,7	2,7																
320	50	126,95	2,0	3,2																
500		158,72	2,5	4,0																
630	63	195	3,1	4,9																
		1	C	alculated ra	tios:	F. = 0	.9 :	X. = (0.72 :	Fd :	= 0.46	: x	Fz = 0	.65						
Table	13.	Flov	w ratios l	Kvs [m ³ /	h] for	bala	anceo	l val	ve plu	igs		,]
Kvs		Stroke					Va	lve no	minal s	ize DN							Cha	aracte	ristics	
[m³/h	ı]	[mm]	40	50	6	35	80		100	12	5*)	150		200	250	2	-	Р		s
25										12	<u> </u>					-	_			-
40		20		_									-							
63																				
94																				
125		38																		
160				-																
250				-	+															
320		50						+												
500			_		+			+												
630		63			+			+			+									
	I					I														

NOTE:

Valve seat diameter for balanced valve plug flow ratio Kvs 250 is 126.95 mm. ^{*}DN125 - special execution, technical data according to individual inquiries.

ALLOWABLE PRESSURE DROPS Δp .

 Δp [bar]

Fs [kN]

F_D[kN] D

Pressure drops Δp [bar] in Tables 15 and 16 apply to closed valve and they are calculated for valve drive potential. Actual pressure drops should not exceed 70% of allowable working pressure for given nominal pressure, material execution and working temperature, as per tables 5...11.

$$\Delta p = \frac{Fs - F_{D}}{0.785 \cdot 10^{-4} \cdot D^{2}} \quad \text{or} \quad Fs = 0.785 \cdot 10^{-4} \cdot D^{2} \cdot \Delta p + F_{D}$$

where

- calculated pressure drop
- actuator available force (Table 14)
- valve plug to valve seat pressure (Table 12)
- valve seat diameter [mm] (Table 12)

Table 14. Available force F_s [kN] of pneumatic actuators

	[Direct actuator I	0		Reverse actuator R								
A	Sup	oply pressure [k	Pa]	Spring range [kPa]									
Actuator size	140	250	400	20 - 100	40 - 120; 40 - 200	60 - 140	80 - 240	120 - 280	180 - 380				
160	0,64	2,4	4,8	0,32	0,64	0,96	1,28	1,92	-				
250	1,0	3,8	7,5	0,5	1,0	1,5	2,0	3,0	-				
400	1,6	6,0	12,0	0,8	1,6	2,4	3,2	4,8	-				
630	2,5	9,5	18,9	1,3	2,5	3,8	5,0	7,6	11,3				
1000	4,0	15,0	30,0	2,0	4,0	6,0	8,0	12,0	18,0				

NOTE:

1. For direct actuators P adopted spring range is 20 – 100 kPa

 For electric and other actuators Δp value can be calculated using above formula and data from Tables 12 and 14, taking nominal load capacity as available force F_s, as per actuator catalog chart.

3. For balanced valve plugs available force Fs at least equal to F_{D} value for soft valve seats in Table 12 should be adopted.

Table 15. Allowable pressure drops Δp [bar] for valves with unbalanced valve plugs and hard valve seats, with pneumatic actuators.

ſ				Air – to – close					Air			
	Flow ratio	Valve nominal	Stroke		Actuator		∆p [bar]		Actuat	or		
	Kvs [m ³ /h]	DN	[mm]	Sizo	Spring range	Supply	/ pressure	[kPa]	Sizo	Spring range	∆p [bar]	
				5120	[kPa]	140	250	400	Size	[kPa]	[20.]	
ľ	do 4	15; 20; 25;				34				20-100	9	
-	u0 4	32; 40; 50								40-200	34	
	6,3	20; 25; 32;				11	40	-		40-200	11	
-		40, 00								60-140	23	
	10	25: 22: 40: 50		160		a	40		160	40-200	9	
	10	23, 32, 40, 30		100		5	40	_	100	60-140 80-240	19 28	
ł										20-100	-	
	16	32.40.50				4	40			40-200	4	
	10	52, 40, 50				- T	0			80-240	17	
-		15: 20: 25:								120-280	30	
	do 4	32; 40; 50				40	-	-		40-200	40	
	63	20; 25; 32;				24	40			20-100	7	
	0,5	40; 50				24	40	_	250	60-140	40	
			20							20-100	5	
	10	25; 32; 40; 50		250		20	40	-		60-140	34	
-										80-240	40	
										40-200	12	
		32; 40; 50			_	12	40	-		60-140 80-240	22 32	
	16									120-280	40	
		65				24	40	-		20-100 40-200	8 24	
										60-140	40	
										20-100 40-200	4 14	
	25	40; 50; 65; 80		400		14	40	-	400	60-140	24	
				100					100	80-240 120-280	34 40	
ľ										40-200	6	
	40	50; 65; 80; 100; 125				6,5	38	40		60-140 80-240	12 18	
										120-280	29	
					20-100					40-200 60-140	9 15	
		65; 80; 100; 125	65; 80; 100; 125		630	20 100	8,5	40	-	630	80-240	21
	63				-				1000	180-380	34 40	
		150		1000		10	40			40-200	16	
		150		1000		10	40	-		120-280	40	
										40-200	4	
		80; 100; 125		630		4	24	40	630	80-240	11	
	0/									120-280	18	
	54		38							40-200	8	
		150; 200		1000		8	32	40	1000	80-240	20	
ļ										180-380	40	
										40-200 60-140	2 4	
		100; 125		630		2	13	28	630	80-240	6	
	125: 160									120-280 180-380	10 16	
	-,									40-200	4	
		150; 200; 250				4	22	40		80-240 120-280	10 17	
										180-380	26	
	050	450 000 050								40-200 80-240	∠,5 6.5	
	250	150; 200; 250				2,5	14	30		120-280	11	
╞			50							180-380	17,5	
	000	150, 200, 250				4 5	10	00		40-200 80-240	4,5	
	320	130, 200, 230		1000		1,0		~~~	1000	120-280	8	
										40-200	- 12,5	
	500	200: 250				- I	6	14		80-240	2,5	
	000	200, 200								120-280 180-380	5	
ł			63							40-200	7,5 -	
	630	250				-	4	9		80-240	1,5	
										120-280	3	
_ L											. v	

^{*)}DN125 - special execution, technical data according to individual inquiries.

Single-ported globe control valves type Z

Note: 1. In Table 15, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%.

Pressure drops chosen that way guarantee internal tightness of closing of the valves.

2. In air-to-open valves actuator with spring range of 40-200 [kPa] can be replaced with actuator with spring range of 40-120 [kPa], at the same pressure drops.

3. In valves with balanced valve plugs and hard valve seats for pressure drops up to $\Delta p=40$ [bar], actuators are to be selected as below:

- for air-to-close action: spring range

- for air-to-open action: spring range

20-100 [kPa], supply pressure 140 [kPa] 40-120 [kPa], or 40-200 [kPa]

٦

 Table 16. Allowable pressure drops Δp [bar] for valves with unbalanced valve plugs and soft valve seats, with pneumatic actuators.

 Air – to – close
 Air – to – open

Flow ratio Valve nominal		Stroke	Actuator		∆p [bar]			Actuat	or	
Kvs [m ³ /h]	diameter DN	[mm]	Sizo	Spring range	Supply	/ pressure	[kPa]	Size	Spring range	∆p [bar
			0120	[kPa]	140	250	400	0120	[kPa]	
do 4	15; 20; 25; 32: 40: 50				25	-	-		20-100 40-200	- 25
63	20; 25; 32;				5	35	-		40-200	5
0,0	40; 50								<u>60-140</u> 40-200	16
10	25; 32; 40; 50		160		3	35	-	160	60-140	13
									40-240	- 22
16	32; 40; 50				-	35	-		60-140	6
									120-280	25
do 4	15; 20; 25;				35	-	-		20-100	15
6.2	20; 25; 32;				17	25			40-200	17
0,3	40; 50				17	- 35	-	250	60-140	35
10	25; 32; 40; 50	20	250		12	35	-		60-140	26
									80-240	35
	22: 40: 50				6	25			40-200 60-140	16
16	32, 40, 30				0	35	-		80-240	26
10									40-200	18
	65				18	35	-		60-140 80-240	34 35
								400	40-200	10
25	40; 50; 65; 80		400		10	35	-		60-140 80-240	20 30
			100						120-280	35
10									40-200 60-140	3,5 9
40	50; 65; 80; 100; 125				3,5	35	-		80-240	15
									40-200	26
	05:00:100:105		600			0.5		<u></u>	60-140	12
63	65; 80; 100; 125		630		0 30	35	-	630	120-240	31
				20-100					180-380	35
	150		1000		13	35		1000	80-240	33
									120-280	35
									60-140	7
	80; 100; 125		630		3	23	35	630	80-240 120-280	10
94		38							180-380	28
	450.000	00	1000		_			4000	40-200 80-240	7
	150; 200		1000			35	-	1000	120-280	30
									40-200	- 35
	100		c20				00	c20	60-140	2
	100		630		-		20	630	120-280	4
125; 160									180-380	14
	150: 200: 250				25	20	35		80-240	9
	100, 200, 200				2,0	20			120-280 180-380	15 25
									40-200	1
250	150; 200; 250				1,2	13	29		80-240 120-280	5 10
		50							180-380	16
		50							40-200	-
320	150; 200; 250		1000		-	9	21	1000	80-240 120-280	3,5 6.5
									180-380	11,
									40-200	- 2
500	200; 250				-	5	8		120-280	4
		63							180-380	7
000	0.50								40-200 80-240	- 1
630	250				-	3	8		120-280	2
	I		L		l	I	Ļ		180-380	4

Note:

1. In Table 16, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%.

- Pressure drops chosen that way guarantee internal tightness of closing of the valves.
 - 2. In air-to-open valves actuator with spring range of 40-200 [kPa] can be replaced with actuator with spring range of 40-120 [kPa], at the same pressure drops.
- 3. In valves with balanced valve plugs and soft valve seats for pressure drops up to ∆p=35 [bar],actuators are to be selected as below:
 - for air-to-close action: spring range
 for air-to-open action: spring range
- 20-100 [kPa], supply pressure 140 [kPa] 40-120 [kPa], or 40-200 [kPa]

4. For rotary actuators – R, supply pressure is to be 40 kPa higher than upper spring range [kPa].

VALVE DRIVES:

1. Diaphragm multi-spring pneumatic actuators w/o manual drive type P/R or with top-mounted handweel type P/R-N – as per Tables 17 and 20.

Table 17. Pneumatic actuators

Size	Diaphragm effective area [cm ²]	Stroke [mm]	Rev per rated stroke (P/R-N)
160	160	20	5
250	250	20	5
400	400	20	5
630	630	38	9
1000	1000	38; 50; 63	8; 10; 13

CHARACTERISTICS:

- complete reversibility of operation allows changing function P (direct action) and R (reverse action) with no additional parts,
- option of changing spring range (tension) with no additional parts,
- option of pre-tensioning of springs,
- option of fitting with top-mounted handweel.

DESIGN AND TECHNICAL SPECIFICATION:

As per Fig. 5.

CONSTRUCTION:

Actuator diaphragm cases (1) and (2) of steel sheets making pressure chamber

Diaphragm (3) of constant effective area, linear relationship between control actuator pressure and plug movement. Executed in neoprene with polyester spacer.

Diaphragm plate (4) stamped from steel sheet, with spring seats.

Support (6) is used for tightening and operating the stem.

Springs (7) of construction spring steel. There are 3, 6 or 12 springs regarding the required range.

Bushing (8) and spacers (9) – used for altering actuator action from direct to reverse and altering spring range.

Warning plates (10) with information on safe disassembly.

TECHNICAL SPECIFICATION:

Control air connection: NPT 1/4", NPT 1/2"

Pipe diameter: \emptyset 6x1, \emptyset 8x1, \emptyset 10x1, \emptyset 12x1

Spring ranges:	20…100 kPa; 40…120 kPa; 60…140 kPa	- 3 springs,
	40200 kPa; 80240 kPa; 120280 kPa	- 6 springs,
	180380 kPa	- 12 springs; (only sizes 630-1000).

Max supply pressure: actuator size 160...630 - 600 kPa, for actuator size 1000 - 500 kPa.

Actuator ambient temperature range: -40...+80°C

Optional accessories:

- top-mounted handweel,
- pneumatic positioner,
- electro-pneumatic positioner,
- air-set,
- three-way solenoid valve,
- lock-up,
- limit switches,
- quick exhaust valve.

Fig. 5. P/R multi-spring actuator

2. Electric actuators

There is a possibility of employing any electric or electro-hydraulic actuator following adjustment of connecting elements. Details and technical specifications of electric actuators as per separate catalog charts.

3. NN manual drives

Drives allowing manual operation of valve, adapted to direct assembly on valve (with no extra parts).

Table 18. Drive sizes.

Size	Stroke [mm]	Rev per rated stroke
250	20	5
400	20	5
630	38	9
1000	38; 50; 63	8; 10; 13

EXTERNAL DIAMETERS AND CONNECTION DIAMETERS, WEIGHTS OF VALVES, PNEUMATIC ACTUATORS AND MANUAL DRIVES

Table 19. Valve connection diameters [mm]

DN	d ₁	d ₃	E	L	L ₁	Ρ	R
1525				125	111	12.5	110
		10	11			12,0	110
3250	M10v1 05	12	44	118	102	16,5	132
	10112X1,20					20,5	160
GE 100		16	50	100	104	16,5	132
05100		10	50	122	104	00 F	100
105 050	M16v1 5	20	95	200	180	20,5	160
120200		20	80	138	118	24,5	216

Note:

1) R and $\oslash P$ can be as per customer request

2) R=160 - for electrical actuators

3) L and L_1 - for valve plug location – valve closed

4) L=138 - for electric actuators

^{*)}DN125 - special execution, technical data according to individual inquiries.

Table	21

32 200

50 254

65 276

80 298

100 352

200 543

250 673

you can calculated A₁ dimension using formulas in Table 21.

288 306

288 306

288 306 312

special execution,

312 402

312 402

312 402

Pody	Mar	king	4
Body Groove CL300 Recess CL300 Ring-joint CL300 DN15 Ring-joint CL300 DN2040	PN	ANSI	A 1
Groove CL300	D1	GF	A A . E x 2
Recess CL300	F1	FF	$A_{1} = A + 5 \times 2$
Body Groove CL300 Recess CL300 Ring-joint CL300 DN15 Ring-joint CL150 Ring-joint CL300 DN2040 Ring-joint CL300 DN50250			A ₁ = A + 5,5 x 2
Ring-joint CL150		ודס	A A . 6 5 x 2
Ring-joint CL300 DN2040	J		A ₁ = A + 0,5 X 2
Ring-joint CL300 DN50250			A ₁ = A + 8 × 2

290 290

Note: Dimension A for CL150 and CL300 refers to bodies with valve face B or RF. For other body versions

290 308

290 308

290 308

technical data according to individual inquiries

210 240

210 240

210 240 305

305 375

305 375

305 375

Table 22. Valve weights w/o drives [kg].

		Valve
DN	Standard	Extended and bellow seal
	bonnet	bonnet
15	6	9
20	7	10
25	7,5	11
32	9,5	13
40	11,5	16
50	14,5	20
65	20	28
80	28,5	36,5
100	42	50
125	110	135
150	120	135
200	180	195
250	320	335

Table 23. Actuator weights [kg]

Actuator	Weight
P / R - 160	9
P / R - N - 160	13,5
P / R - 250	10
P / R - N - 250	14,5
P / R - 400	16
P / R - N - 400	20,5
P / R - 630	30
P / R - N - 630	37
P / R - 1000	74
P / R - N - 1000	100

Table 24. Manual drive weights [kg]

225 225

225 305

225 305

225 305

450 240

450 240

450 240

Drive	Weight
NN - 250	5,5
NN - 400	6,5
NN - 630	8,5
NN - 1000	40

Single-ported globe control valves type Z

MARKING EXAMPLE:

Control valve type Z with reverse action pneumatic actuator with top-mounted handweel, extension bonnet, expanded graphite stem sealing, leakage class IV, equal percentage contoured plug, execution in stainless steel:

RN-Z-2E470P5

Marking is shown on valve nameplate.

Additional information:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- plug stroke fluid group [1 or 2],
- serial number and year of manufacture.

ORDERING:

The order should contain all information as per data questionnaire. Full information can be obtained from the Sales and Marketing Department or Technical and Development Department.

CONTROL VALVES TYPE Z® WITH QUICK CLOSURE CIRCUITS FOR GASES

APPLICATION AREA:

Control valves with pneumatic actuators fitted with quick closure circuits are designed for burners and other gas appliances, where they control the flow, and in case of emergency, cut the flow off. Time to full closure is less than 1 second.

FEATURES:

Possible applications:

- range of nominal sizes from DN15...250 for nominal pressures PN10...40; CL150; CL300,
- all surfaces exposed to fluids are resistant to flammable gases and lubricants;
- various materials of valve body and internal parts, adapted to specific working conditions
- wide range of flow coefficients and control characteristics,
- easy assembly and dismantling of valve internal parts for maintenance and service,
- possibility of mating with revers-action multi-spring actuators, types R-250; 400; 630; 1000 with no extra parts (keeping the number of springs),
- high tightness of closure due to application of soft seats,
- reliable connection between actuator stem and valve, and between seat and body,
- maintenance-free bonnet packings:
 sylphon bellows s/s with FVH-PTFE or TA-LUFT packing,
- competitive prices due to simple and functional design of valves and actuators and used materials,
- design and production process meet the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines.
- valves manufacture process meets requirements of ATEX Directive 94/9/EC.

Z[®] - is a trademark registered with Republic of Poland Patent Office.

 Body
 : single-ported, flanged, cast in carbon steel or stainless steel.

 Nominal size: DN15; 20; 25; 32; 40; 50; 65; 80; 100; 150; 200; 250

 Nominal pressure:
 PN10; 16; 25; 40 (as per PN-EN 1092-1:2010 and PN-EN 1092-2:1999); CL150; CL300 (as per PN-EN 1759-1:2005).

Steel flanges CL150; CL300 are so designed that they can be assembled with flanges executed per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. Equivalent identification as per PN are: CL150: PN 20 and CL300: PN 50.

Table 1. Flanged end connections

		Facing of flange types								
Material	Nominal pressure	Raised face	Groove	Recess	Ring - joint					
		Identification								
Grey iron	PN10; 16		-	-	-					
Spheroidal iron	PN10; 16; 25; 40		-	-	-					
	PN10; 16; 25; 40	B ²⁾	D	F	-					
Cast steel	CL150		-	-						
	CL300		DL (D1 1)	F (F1)	J J (HIJ)					
1) - only for	CL300; 2) - B1 - (Ra=12.5 m	nm, concentric surface	structure "C"), B2 – (F	Ra as agreed with the o	customer);					
	() - iden	tification of connection	ns as per ASME B16.5							
	Possible executio	n of flanges per specif	ication and indicated st	tandards						

Face-to-face dimensions (body): as per PN-EN 60534-3-1; 2000r., Series 1 - for PN10; PN16; 25; 40; series 37- for CL150; series 38 - for CL300

37- TOP GL 150; 9	series 38 - Tor GL300		
Bellows seat b	• non-cast, fixed to body via mour - cast (DN150-250).	nting plate (DN15-100)	
Valve plug	 contoured, unbalanced. 		
	 control characteristics: 	- linear	(L)
		 equal percentage 	(P)
		- quick-opening	(S)
	 rangeability: 	- 50:1	
Valve seat -	screwed in, with cone - centering, (PTFE packing).	sealing and protecting against	unscrewing,
Leakage class -	- bubble: class VI to PN-EN 60534-4		
NOTE:			
Other data as p	er catalog of Z valves and P/R actuators	ð.	

ACTUATOR ACCESSORIES:

- positioner,
- quick exhaust valve,
- solenoid valve 3/2,
- limit switches, etc.
- Valve accessories:

- Strainers are to be installed upstream the valve (Strainer class 600 meshes/cm²)

Additional information:

- used electric appliances – for application in explosion hazard areas (EEx).

- valves are suitable for application based on **Technical Approval No. 05-003/96 (edition IV/2001)**, issued by OIL AND GAS INSTITUTE.

- valves manufactured based on recommendations of standard PN-EN 161.

OPERATION:

Pneumatic control signal is supplied to pressure chamber of actuator through activated three-way solenoid valve (open to control signal). Increase in pneumatic control signal generates force which moves the counteracting springs, causing movement of stem with plug towards open position. Any break of the electric circuit (e.g. due to power supply failure) causes de-energizing of the solenoid valve and valve pressure relief. Spring force causes movements of actuator and valve motion elements towards closed position and cutting-off media flow. Air is vented from the actuator chamber to atmosphere. Cutting-off (closure of valve) occurs also in the case of pneumatic signal fading (supply pressure failure).

soft

NOTE:

In case of need for quick emergency opening of valve (pressure fading, breaking of electric circuit) there is a possibility of executing valve with quick opening functionality by application of P type pneumatic actuators.

TECHNICAL SPECIFICATION:

- nominal sizes:
- nominal pressures: Pl
- flow ratios:
- max. stroke
- ambient temperature:
- fluid temperature:
- leakage class:
- reset time:

DN15...250 PN10...40; CL150; CL300 Kvs 0,01...160 38 mm - 40°C ... + 80°C max. + 220°C class VI as per PN-EN 60534-4 about 1sec.

ORDERING:

The order should contain:

- valve type and size, or technical and operational parameters, to allow calculations and selection of valve (as per technical specification questionnaire),
- valve designation: type of utilities, operation mode, etc.,
- actuator accessories: pneumatic or electro-pneumatic positioner, air-set, three-way solenoid valve, quick drainage valve, limit switches, etc.,
- valve accessories: strainer (mesh density/cm²),
- reset time,
- valve identification as per relevant data sheets.

For assistance in selecting valve please contact the personnel of Sales and Marketing Department or Technical Department.

NOTE:

For detailed technical specification of accessories refer to separate catalogs of respective accessories.

SINGLE-PORTED GLOBE CONTROL VALVES TYPE Z1A®

APPLICATION AREA:

Single-ported globe control valves type Z[®]1A are used in automatic and remote control instalations as flow control elements to adjust flow of liquids, steam and gases. Wide range of material and design versions makes the valves applicable in most demanding working conditions in power generation, petroleum chemistry, heating, chemical industry, metallurgy, etc. versions designated for Western Europe market can be marked BR12.

FEATURES:

• various materials of valve body and internal parts, adapted to specific working conditions,

• design provides noise reduction, enhanced resistance to cavitation and flashing, and elimination of choked flow,

• wide range of nominal pressures, PN10 to CL2500, and flow ratio and control characteristics,

• reduction in aggressive and toxic media emissions to environment through application of bellow seal bonnets or bonnet packings meeting requirements of TA - LUFT,

• easy assembly and dismantling of valve internal parts for maintenance and service,

• high durability and reliability due to application of top-class materials and surface improvement processes (burnishing, stelliting, heat treatment, CrN coating),

• possibility of mating with revers action P/R (column) and P1/R1 (cast yoke) multi-spring actuators, and changing the spring range with no extra parts (keeping the number of springs),

- possibility of fitting actuators with side-mounted (P1/R1) or top-mounted (P/R) handwheel,
- possibility of performing diagnostics of "valve actuator" due to application of smart electro-pneumatic positioners,
- wide range of electric actuators,
- special designs for oxygen, hydrogen, gas fuels, low temperature fluids (liquid oxygen, liquid nitrogen), acid gases containing H₂S; with heat jacket; for potentially explosive atmospheres as per ATEX Directive 94/9/EC,
- design and production process meet the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines.

Z1A[®] is a trademark registered with Republic of Poland Patent Office

DESIGN AND TECHNICAL SPECIFIACTION:

Body (1): single-ported, cast Nominal size: DN15; 20; 25; 40; 50; 80; 100; 150; 200; 250; 300 Nominal pressure:

• PN10; 16; 25; 40; 63; 100 (as per PN-EN 1092-1:2010)

PN-H-74306:1985; PN-H-74307:1985. ٠

• CL150; CL300; CL600; CL900; CL1500; CL2500 (as per PN-EN 1759-1:2005). divided as follows:

DN15...300: PN10...100; CL150...CL600 *)

DN15...150: CL900; PN160 *)

DN15...100: PN250...400; CL1500...CL2500 *)

*) higher nominal pressures available after agreement with the manufacturer Connections: - flanged: as per Table 1

- butt welding ends BW, as per Table 19 and 18

- socket welding ends SW, as per Table 21

Steel flanges CL150; CL300; CL600; CL900; CL1500; CL2500 are so designed that they can be assembled with flanges as per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. Equivalent identification as per PN are: CL150: PN 20

CL600: PN 110 CL1500: PN 260 CL300: PN 50 CL900: PN 150 CL2500: PN 420

Table 1. Flanged end connections

		Facing of flange types									
Nominal pre	essure	Raised face	Groove	Recess	Ring - joint						
			Identification								
PN10; 16; 25; 40; 63; 100;	; 160; 250; 320; 400	B 3)	D 1)	F 1)	-						
CL150; 3	00	B ³⁾	DL (D1 ²)	F (F1 1)	J (RTJ)						
CL600; 900; 15	00; 2500	B ³⁾ (RF)	DL (GF)	F (FF)	J (RTJ)						
1) - do PN160; 2) - tylk	ko dla CL300; ³) - B1 – (R	a=12.5 mm, concentri	c surface structure "C"), B2 – (Ra as agreed v	with the customer);						
	() - Iden Possible executio	In of flanges per specif	IS as per ASIVIE B16.5	tandarde							
Possible execution of hanges per specification and indicated standards											
Face-to-face dimensions:	- flanged valves as p	per PN-EN 60534-3	8-1; PN-M-74005; I	SA S75.16-1993; F	ig. 5; Table 16; 17						
	 welding ends valv 	es; Fig. 5; Table 1	8								
	- as per PN-EN 605	534-3-3: for PN	10100 and CL1	50600							
	- as for flanged val	ves PN 160: for F	PN 160 and CL90	00							
	- as for flanged value	- as for flanged valves PN 400: for PN 250400 and CL15002500									
Materials:	- as per Table 2;										
	Relationship betwe	en working pressu	are and temperatu	re as per Table 3.	9.						
Bonnet (2):	- standard										
	- extension		2 2 3								
	- bellows seal (PN1	040; CL1503	00)								
valve plug (3):	- piston, sieeve gui	ded, nard. Rangea	geability: 50.1								
	- variants:	C	contoured,								
	£1	piston - periorateo, (multi-noie)									
	- flow characteristic	S: E	equal percentage -	- P							
		l c	IIIIEdi - L								
Valvo soat (A):	fitted in and and so	u valod with body, ba	rd (tight soat after (- 3 (Unity for Contour	ufacturer)						
Valve Seat (4).	- Inteu-In and and se	aleu with bouy, na	iu (light seat alter t	consularly the man	ulacturer)						
Prossing cage (6A):	- valve seat to body	u sealing lace.									
Choke cade (6R):	- valve seal to bouy	eat fixture causin	a reduction in nrea	ssure dron hetwee	en seat and plug						
Body gasket (7) and sea	t gasket (8): spiral (praphite+1 4404 ir	all executions		in ocat and plag.						
Stem packing (9):	- PTFF-V	packing, compres	sed with spring bo	olt (18).							
5.000 paoling (c).	- ring gask	ets formed in brai	ded packing cords	s (PTFE +GRAPH	ITE).						
	- graphite l	kits (expanded and	silky graphite) or c	askets formed in b	braided graphite cords.						
	- TA-LUF1	sealing with PTF	E-V packing kit o	or graphite kit; pag	cking structure as per						
	Figs. 1 a	and 2, range of ap	plications as per T	able 10.	5						
Leakage class: (as per P	N-EN 60534-4)										
	-basic:	(class IV)	I	less than 0,01% K	٧.						
	-enhanced	d: (class V)	:	3 · 10 ⁻⁴ D · ∆p [cn	n³/min]						
	where D (mm) - is seat diam	neter as per Table	10	-						
	∆p [bar] -	actual pressure dr	op in closed valve) .							
Fluid flow direction:	to valve pl	ug.									
Flow coefficients:	as per Tab	ole 11									

ltem	Part			Materials	·						
1	Body	,	GP 240 GH ; (1.0619) WCB	G17CrMo 9-10 ; (1.7379) WC9	GX5CrNiMo 19-11-2 ; (1.4408) CF8M						
2 Bonnet DN1550		S 355 J2G3 (1.0570)	13CrMo4-4 ; (1.7335)	X6CrNiMoTi 17-12-2 ; (1.4571)							
		DN80300	WCB	WC9 X6CrNiMoTi 17-12-2: (1.45)	71)						
3	Plug		X6	CrNiMoTi 17-12-2; (1.4571) + st (17CrNi 16-2 ; (1.4057) + heat tr	ellite + CrN reatment						
4	Seat			X6CrNiMoTi 17-12-2; (1.45; + X6CrNiMoTi 17-12-2; (1.4571) + National States (1.4057) + heat tr	71) ⊦ stellite eatment						
5	Sterr	1	X6	X6CrNiMoTi 17-12-2; (1.45) CrNiMoTi 17-12-2; (1.4571) + sto (17CrNi 16-2 : (1.4057) + boot tr	71) ellite + CrN						
6A	Compressio	on cade	/	X6CrNiMoTi 17-12-2: (1.4057) + fieat ti X6CrNiMoTi 17-12-2: (1.45	71)						
6B	Choke c	age		X17CrNi 16-2; (1.4057) + heat tr	eatment						
7	Body ga	sket			nirol						
8	Seat gas	sket		GRAFHIE (90%) + 1.4404 (S	pirai)						
		Τ		PTFE + GRAPHITE							
9	Packing	i kit		PTFE "V" (Rings)							
				GRAPHITE							
10	Press sleeve			X6CrNiMoTi 17-12-2: (1.45)	71)						
11	Press le	ver		S 355 J2G3 · (1 0570)	/						
		PN10 CL300	8.8	Δ	4 - 70 *)						
12	Body screw	Body screw	Body screw	Body screw	Body screw	Body screw	Body screw	PN63 CL2500	42CrMo4 (1 7225)	21CrMo\/5-7 (1 7709)	X6NiCrTiMo\/B 25-15-2 (1 498)
		PN10 CL300	8.8	Δ.	1 - 70 *)						
13	Body nut		420rMo4 (1 7025)	010rMa\/5.7 (1.7700)	$\frac{1}{100} = \frac{1}{100} = \frac{1}$						
14	Poppet o	FN030L2300	42011004 (1.7223)	2101101073-7 (1.7709)	1 70 *)						
15	Donnet		0.0	A4 - 70)							
10	Bonnet	nut	0.0		4 - 70 ")						
16	Notched	peg		X6GrNIM01117-12-2; (1.45)	(1)						
1/	Sprin	g		12R10 (SANDVIK)							
18	Spacer s	eeve		X6CrNiMoTi 17-12-2; (1.45)	71)						
19	Guide sl	eeve	X6CrNiMoTi 17-12-2; (1.4571) + stellite + CrN X17CrNi 16-2 ; (1.4057) + heat treatment								
			Relevant material	standards							
	Material	610)		Standard							
	<u>טר 240 טח , (1.0</u> WCR	013)		ASTM A 216							
	G17CrMo 9-10 : (1	.7379)		PN-EN 10213-2							
	WC9	, 	ASTM A 217								
G	GX5CrNiMo 19-11-2 ;	(1.4408)	PN-EN 10213-4								
	CF8M	(570)	ASTM A 351								
	5 355 J2G3 ; (1.U	335)	PN-EN 10025								
Х	(6CrNiMoTi 17-12-2	(1.4571)	PN-EN 10020								
	X17CrNi 16-2 ; (1.	4057)	PN-EN 10088								
	C45 (1.0503))	PN-EN 10083-1								
	X30Cr13 (1.402	28)		PN-EN 10088							
	8.8			EN 20898-1							
	A4-70 *)			EN ISO 3506-2							
	42CrMo4 (1.72	25)		EN 10269							
	21CrMoV5-7 (1.7	709)		EN 10269							
			EN 10209								

NOTE:

*) - to be applied for nominal pressures PN10...CL600.

Hardening of valve internal surfaces comprises:

a) stelliting – padding of surfaces with stellite: ~ 40HRC

b) CrN coating – introducing chromium nitride to external layer of detail, to the depth of ca. 0,1mm; ~950HV

c) heat treatment: valve plug (~45HRC), valve seat (~35HRC), guide sleeve (~45HRC)

Table 39. Allowable working	overpressure for materials	at proper temperatures.
-----------------------------	----------------------------	-------------------------

Table 3.	Table 3. Material: GP240GH (1.0619) as per PN-EN 10213-2													
		Temperature ['C]												
PN / CL	Standard	-1050	100	150	200	250	300	350	400					
		Allowable working pressure [bar]												
PN10	EN 4000 4	10	9,2	8,8	8,3	7,6	6,9	6,4	5,9					
PN16	EN 1092-1	16	14,8	14	13,3	12,1	11	10,2	9,5					
CL150	PN-EN 1759-1	17,3	15,4	14,6	13,8	12,1	10,2	8,4	6,5					
PN25	EN 1000 1	25	23,2	22	20,8	19	17,2	16	14,8					
PN40	EN 1092-1	40	37,1	35,2	33,3	30,4	27,6	25,7	23,8					
CL300	PN-EN 1759-1	45,3	40,1	38,1	36	32,9	29,8	27,8	25,7					
PN63	EN 1002 1	63	58,5	55,5	52,5	48	43,5	40,5	37,5					
PN100	EN 1092-1	100	92,8	88	83,3	76,1	69	64,2	59,5					
CL600		90,5	80,2	76,1	72	65,8	59,7	55,5	51,4					
CL900		136	120	114	108	98,7	89,5	83,3	77,1					
PN160		160	148,5	140,9	133,3	121,9	110,4	102,8	95,2					
PN250		250	232,1	220,2	208,3	190,4	172,6	160,7	148,8					
CL1500	PN-EN 1759-1	226	201	190	180	165	149	139	129					
PN320		320	297,1	281,9	266,6	243,8	220,9	205,7	190,4					
PN400		400	371,4	352,3	333,3	304,7	276,1	257,1	238					
CL2500		377	334	317	300	274	249	231	214					

NOTES:

- 1. It is allowed to apply carbon steel and acid proof cast steel for temperatures lower than given in Tables 3...9, provided that working pressure is reduced respectively, working temperature impact tests are performed and cast is heat treated. Details are to be consulted with manufacturer.
- 2. Working pressure for intermediate temperature values can be calculated by interpolation.
- Temperature range for flanged connections: up to +537°C, for welding connections: up to +650°C

																			-
Table 4.			Material: G17CrMo 9-10 (1.7379) as per PN-EN 10213-2																
		Temperature ['C]																	
PN / CL	Standard	-1050	100	150	200	250	300	350	400	425	450	475	500	510	520	530	540	550	
								AI	lowable wo	rking press	ure [bar]								1
PN10		10	10	10	10	10	10	9,7	9,2	9	8,8	7,6	6,4	5,6	4,9	4,2	3,7	3,2	1
PN16]	16	16	16	16	16	16	15,6	14,8	14,4	14	12,1	10,2	8,9	7,8	6,8	5,9	5,1	1
CL150	PN-EN 1759-1	19,5	17,7	15,8	14	12,1	10,2	8,4	6,5	5,6	4,7	3,7	2,8	2,4	2	1,7	1,4	-	1
PN25	EN 1002 1	25	25	25	25	25	25	24,4	23,2	22,6	22	19	16	14	12,2	10,7	9,2	8	1
PN40	EN 1092-1	40	40	40	40	40	40	39	37,1	36,1	35,2	30,4	25,7	22,4	19,6	17,1	14,8	12,9	1
CL300	PN-EN 1759-1	51,7	51,5	50,2	48,3	46,3	42,8	40,2	36,6	35,1	33,8	31,7	28,2	26,6	23,5	20,6	17,8	15,5	1
PN63	EN 1002 1	63	63	63	63	63	63	61,5	58,5	57	55,5	48	40,5	35,4	30,9	27	23,4	20,4	1
PN100	100	100	100	100	100	100	100	97,6	92,8	90,4	88	76,1	64,2	56,1	49	42,8	37,1	32,3	1
CL600	600	103	103	100	96,7	92,6	85,7	80,4	73,1	70,2	67,6	63,3	56,4	53,3	47,1	41,1	35,7	31,1	1
CL900	-	155	155	151	145	139	129	121	110	105	101	95	84,6	79,9	70,6	61,7	53,5	46,6	1
PN160	-	160	160	160	160	160	160	156,1	148,5	144,7	140,9	121,8	102,8	88,9	78,4	68,5	59,4	51,8	1
PN250		250	250	250	250	250	250	244	232,1	226,1	220,2	190,4	160,7	140,4	122,6	107,1	92,8	80,9	1
CL1500	PN-EN 1759-1	259	258	251	242	232	214	201	183	175	169	158	141	133	118	103	89,1	77,7	1
PN320	1	320	320	320	320	320	320	312,3	297,1	289,5	281,9	243,7	205,7	179,8	156,9	137,1	118,8	103,6	1
PN400	1	400	400	400	400	400	400	390,4	371,4	361,8	352,3	304,7	257,1	224,7	196,1	171,4	148,5	129,5	1
CL2500		431	429	418	403	386	357	335	305	292	282	264	235	222	196	171	149	130	
Table 5.	-						Material	: GX5Cr	NiMo 19-	1-2 (1.44	108) as pe	r PN-EN 1	0213-4						
										Temperatu	re ['C]								
PN / CL	Standard	-1050	100	150	200	250	300	350	400	425	450	475	500	510	520	530	540	550	Т
			•				°		Allowab	le working	pressure [b	ar]							

									Allowab	le working	pressure [b	ar]							
PN10	EN 1000 1	10	10	9	8,4	7,9	7,4	7,1	6,8	-	6,7	-	6,6	-	-	-	-	6,5	5,6
PN16	EN 1092-1	16	16	14,5	13,4	12,7	11,8	11,4	10,9	-	10,7	-	10,5	-	-	-	-	10,4	8,9
CL150	PN-EN 1759-1	17,9	16,3	14,9	13,5	12,1	10,2	8,4	6,5	5,6	4,7	3,7	2,8	2,4	2	1,7	1,4		
PN25	EN 4000 4	25	25	22,7	21	19,8	18,5	17,8	17,1	-	16,8	-	16,5	-	-	-	-	16,3	14
PN40	EN 1092-1	40	40	36,3	33,7	31,8	29,7	28,5	27,4	-	26,9	-	26,4	-	-	-	-	26	22,4
CL300	PN-EN 1759-1	46,7	42,5	38,9	35,3	32,9	30,5	28,8	27,6	27,2	26,9	26,6	26,4	26,3	22,5	22,4	22,3	22,2	-
PN63	EN 4000 4	63	63	57,3	53,1	50,1	46,8	45	43,2	-	42,4	-	41,7	-	-	-	-	41,1	35,4
PN100	EN 1092-1	100	100	90,9	84,2	79,5	74,2	71,4	68,5	-	67,3	-	66,1	-	-	-	-	65,2	56,1
CL600		93,4	85	77,8	70,6	65,8	61	57,6	55,2	54,5	53,8	53,3	52,8	52,6	44,9	44,8	44,6	44,4	-
CL900		140	127	117	106	98,6	91,4	86,4	82,8	81,7	80,6	79,9	79,2	78,9	67,4	67,1	66,9	66,7	-
PN160		160	160	145,5	134,8	127,2	118,8	114,2	109,7	-	107,8	-	105,9	-	-	-	-	104,3	89,9
PN250		250	250	227,3	210,7	198,8	185,7	178,5	171,4	-	168,4	-	165,4	-	-	-	-	163	140,4
CL1500	PN-EN 1759-1	233	212	194	176	164	152	144	138	136	134	133	132	132	112	112	111	111	-
PN320		320	320	291	269,7	254,4	237,7	228,5	219,4	-	215,6	-	211,8	-	-	-	-	208,7	179,8
PN400		400	400	363,8	337,1	318	297,1	285,7	274,2	-	269,5	-	264,7	-	-	-	-	260,9	224,7
CL2500		389	354	324	294	274	254	240	230	227	224	222	220	219	187	187	186	185	-

Table 7			Mater	al: WO	Basn	er ASTM	A216				1	Tabl	e 6.	Mater	rial: G2	20Mn5 (1.6220)	wg PN	J-EN 10	213-3				
14510 11			mator		Tem	perature ['C]										T	emperat	ure ['C]					
PN / CL	Standard	-1050	100	150	200	250	300	350	375	400]	PN /	CL	Norma		-40	100	150	200	250	300			
				Allo	wable wo	rking pre	ssure [ba	r]				DNI				6	Allowable	e working	pressure	e [bar]	2.4			
PN10	EN 1092-1	10	10	9,7	9,4	9	8,3	7,9	7,7	6,7	{	PN	6		-	16	16	3,0 10.1	3,6 9.6	9,28	3,4 9.07			
CI 150	PN-FN 1759-1	16	16 17.7	15,6	15,1	14,4 12.1	13,4	12,8 8.4	12,4 7.4	10,8	{	PN2	:5			25	25	15,8	15	14,5	14,2			
PN25		25	25	24,4	23,7	22,5	20,9	20	19,4	16,9	1	PN4	0	-		40	28	28	27	26	25			
PN40	EN 1092-1	40	40	39,1	37,9	36	33,5	31,9	31,1	27	1	PN6	i3			63	59	58	55	53	51			
CL300	PN-EN 1759-1	50	46,4	45,1	43,9	41,8	38,9	36,9	36,6	34,6]	PN1	00			100	95	92	87	85	82			
PN63	EN 1092-1	63	63	61,5	59,6	56,8	52,7	50,3	49	42,5	4	PN1	60			160	152	148	140	136	132			
PN100		100	100	97,7	94,7	90,1	83,6	79,8	77,8	67,5	-													
CL600		150.1	92,8	90,6	87,8	83,6 125.1	//,ə 116.1	110.8	109.5	103.4	{													
PN160		159,2	147,6	143,9	139,4	132,7	123,1	117,5	116,1	109,7	1													
PN250		241,4	223,5	217,8	211,2	201,1	186,6	178,1	175,8	166,2]													
CL1500	PN-EN 1759-1	250,5	231,9	226	219,2	208,7	193,6	184,8	182,4	172,5														
PN320		313	289,9	282,6	273,9	260,8	242	231	227,9	215,6	-													
PN400		396,4	367,3	358	346,9	330,3	306,6	292,6	288,6	273,1	{													
CL2500		417,2	386,6	376,9	365,1	347,7	322,7	308	303,8	287,5														
Table 8.								Mate	erial: W	/C9 as	per AST	M A217												
										Temp	erature [*	C]			. <u> </u>									
PN / CL	Standard	-1050	100	150	200	250	300	350	375	400	425	450	475	500	510	520	525	530	540	550				
									Allov	vable wor	king pres	sure (bar]											
PN10	EN 1092-1	10	10	10	10	10	10	10	10	9,9	9,7	9,5	7,3	5,5	5	4,4	·	3,9	3,4	2,9				
PN16		16	16	16	16	16	16	16	16	15,9	15,6	15,3	11,7	8,9	8	7,1	-	6,2	5,4	4,7				
CL150	PN-EN 1759-1	19,5	17,7	15,8	14	12,1	10,2	8,4	7,4	6,5	5,6	4,6	3,7	2,8	-	-	1,9	-	1,3	-				
PN25	EN 1092-1	25	25	25	25	25	25	25	25	24,8	24,4	23,9	18,3	14	12,6	11,2	•	9,8	8,5	10				
CL 300	PN-FN 1759-1	40 51.7	40 51.5	40 50.3	40	40	40	40	40 38.9	36.5	39	30,3	29,2	22,3	20,2	- 10	21.6	10,7	13,0	15.3				
PN63		63	63	63	63	63	63	63	63	62.5	61.5	60,3	46	35.2	31.9	28.3	-	24.8	21.4	18.8				
PN100	EN 1092-1	100	100	100	100	100	100	100	100	99,2	97,6	95,6	73,1	55,9	50,6	44.9		39,3	34	29,9				
CL600		103,4	103,1	100,3	97,5	92,7	85,7	80,4	77,6	73,3	70,2	67,7	63,4	55,7	-	-	43,3	-		30,7				
CL900		155,1	154,6	150,6	146,2	139	128,6	120,7	116,5	109,8	105,4	101,4	95,1	83,4			64,9	·	•	46				
PN160		164,5	163,9	159,5	154,7	147,4	136,4	128	123,6	116,5	111,8	107,6	100,8	87,3			68,9			48,8				
PN250	DN 5N 4750 4	249,2	248,1	239,8	231,2	222,6	206,6	193,8	187	176,4	169,2	162,9	152,5	122,2		-	104,4	-	•	74,1				
CL1500	PN-EN 1759-1	258,6	257,7	250,8	244	231,8	214,4	201,1	194,1	183,1	175,6	169,1	158,2	138,9	-	-	108,4	-	-	76,9				
PN320		323,2	321,9	312,3	302,3	289,2	268	251,4	242,5	228,8	219,4	211,4	197,8	165,7	-	-	135,4	-	-	96				
PN400		409,4	408	397,1	385,7	366,8	339,4	318,5	307,1	289,7	277,9	267,7	250,7	218,5	-	-	171,5	-	-	121,5				
CL2500		430,9	429,5	418,3	406,5	386,2	357,2	335,3	323,2	304,9	292,5	281,8	263,9	231,7	-	-	180,5	-	-	127,9				
Table 9									M	laterial:	CE8M	as ner	ASTM A	351										
											010101	Temp	erature ["C]										
PN/CL	Standard	-1050	100	150	200	250	300	350	375	400	425	450	475	500	510	520	525	530	540	550	575	600	625	649
											Allo	wable wo	rking pre	ssure [ba	r]									
PN10	EN 4000 4	8,9	7,8	7,1	6,6	6,1	5,8	5,6	5,5	5,4	5,4	5,3	5,3	5,2	5,2	5,2	-	5,2	5,1	5,1	4,7	3,8	-	-
PN16	EN 1092-1	14,3	12,5	11,4	10,6	9,8	9,3	9	8,8	8,7	8,6	8,5	8,5	8,4	8,3	8,3	-	8,3	8,3	8,2	7,6	6,1	-	-
CL150	PN-EN 1759-1	18,4	16	14,8	13,6	12	10,2	8,4	7,4	6,5	5,6	4,6	3,7	2,8	-	-	1,9	-	1,4	-	-	-	-	-
PN25	EN 1092-1	22,3	19,5	17,8	16,5	15,5	14,6	14,1	13,8	13,6	13,5	13,4	13,3	13,2	13,1	13,1	-	13	13	12,9	12	9,6	-	-
PN40		35,6	31,3	28,5	26,4	24,7	23,4	22,6	22,1	21,8	21,6	21,4	21,2	21	21	20,9	-	20,8	20,8	20,7	19,1	15,5	-	-
CL300	PN-EN 1/59-1	48,1	42,3	38,6	35,8	33,5	31,6	30,4	29,6	29,3	29	29	28,7	27,3	-	-	25,2	-	- 007	24	22,9	19,9	15,7	12,8
PN100	EN 1092-1	90,1 89,1	49,2 78.1	44,9 71 3	41,0 66	30,9 61.8	58 5	56 4	১4,9 55.3	54,4	54 54	აა,/ 53.4	53 1	52 A	52 4	32,9 52.2		32,8 52.1	51 Q	51 7	30,2 47 Q	24,4	-	
CL600		96,3	84.5	77,1	71.2	66,7	63,1	61	59,8	58,9	58,3	57,7	57,3	54,8	-	-	50.6	-	-	47.8	45.5	39.8	31,7	25,5
CL900		144,4	126,8	115,6	, <u> </u>	100,2	95	91,3	89,7	88,2	87,3	86,6	86	82,1	-		75,9	-		71,8	68,3	59,7	47,5	38,3
PN160		153,1	134,4	122,6	113,5	106,3	100,7	96,8	95,1	93,6	92,6	91,8	91,2	87,1	-		80,5	-		76,2	72,5	63,3	50,4	40,3
PN250	DN_EN 1750 1	231,9	203,3	185,4	171,9	160,9	152,4	146,7	143,9	141,7	140,3	139,1	138,1	131,7	-	-	121,8	-	-	115,4	109,8	95,9	76,3	61
CL1500	FIN-EIN 1709-1	240,6	210,9	192,4	178,4	167	158,1	152,2	149,3	147,1	145,6	144,3	143,3	136,7	-		126,4	•	·	119,8	114	99,5	79,2	63,8
PN320		300,8	263,7	240,6	223	208,7	197,6	190,3	186,7	184	182,1	180,3	179,2	170,9	-		158	-	-	149,7	142,5	124,4	98,9	79,2
PN400		381	334,1	304,8	282,4	264,2	250,3	241,1	236,5	233,1	230,7	228,4	227	216,6	-	•	200,2	-	-	189,5	180,5	157,7	125,1	100,4
01.0500		401	351,7	320,8	297,2	278,1	263,5	253,8	249	245,4	242,9	240,4	238,9	228	-	-	210,7	- 1	- I	199,5	190	166	131,7	106,5

DESIGNS

Design and material options are to be selected to suit working conditions. Contoured plug and press cage valve is the basic design for normal working conditions. In cases of noise emissions exceeding the level accepted by customer (normally 85 dBA) perforated valve plugs are to be applied, which are exchangeable with contoured plugs and allow noise reduction by 10dBA with respect to the basic design. Further noise reduction (by 5 dBA) can be achieved by application of choke cage, which causes reduction in pressure drop between plug and seat. Such design is also recommended in case of choked flow, cavitation and flashing. Perforated structures feature higher pressure recovery coefficient F_L , which allows achievement of higher flow at the same Kv_s and Δp as in basic design. In case of compressive media it is advisable to apply diffusers at the valve outlet. Design variant of valve is to be selected based on computer-aided calculations of flow ratio, noise level, medium status, and effectiveness of such actions depends on precision of data submitted by customer.

In justified cases (noise, choked flow) diffusers can be fitted with additional perforated choke structures in the form of plates assembled between flanges or welded in diffuser interior. On customer's request, also when flow conditions justify such solution, special executions are recommended concerning materials, flow ratios, control characteristics, leakage class, etc.

Tablica 10: Packing types with application ranges.

			Temperature [°C]	
Packing	PN		Bonnet	
		Standard	Extension	Bellow seal
PTFE-V			100 40	
PTFE + Graphite	up to CL600)*	-46+200	-19840	-100+200
PTFE-V / TA-LUFT			+200+300	
Graphite	up to CL 2500.)*	. 200 . 200	.200 .527 (.650)**	. 200 400
Graphite / TA-LUFT	up to 622000)	+200+300	+300+337 ,(+030)	+200+400

)** - for welding ends valves

		Kvs				Seat for.	F	D											
Сс	ontoure	ed	Perfo	rated	Stroke	[D]	CL IV	cı v					Nomina	I size DN					
	plugs		plu	gs			01.11					r				ï			
L	Р	S	L	Р	[mm]	[mm]	[k	N]	15	20	25	40	50	80	100	150	200	250	300
0,1	-	-	-	-															
),16	-	-	-	-															pe
0,2	25	-	-	-		6 35	01	0 65											Sial
0,4	4	-	-	-		0,00	•,.	0,00											e.
0,6	3	-	-	-												ļ	ļ		l ĉ
1,	0	-	-	-													ļ		tio
1,	6	-	-	-	20	9,52	0,15	1,0											, , ,
2,	5	-	-	-		12,7	0,2	1,3				<u> </u>							e ch
4,0	0	4,8	-	-		10.05		1 05	•										nic
6,	3	1,0				19,05	0,3	1,95		•									
10)	12	b,	. <u>პ</u>		20,64	0,33	2,1			•								late
- 10) -	20	- 1	0		20,20	0,4	2,0					<u> </u>						a
23)	30	1	0 5		31,72	0,5	3,3				•							ğ
40	2	40		0		41,20	0,7	4,0					•						din
0.	1	- 115	4	2 2		50,0 66,7	11	7.2											gt
12	5			0	38	00,7	1,1	1,2						-					i J
16	0	192	125	94		88,9	1,4	9,1							•				divi
25	0	-	180	125		107 92	17	11											du
32	0	384	260	200	50	126.95	20	13											
50	0	600	425	320		158,72	2,5	16											l npr
63	0	-	630	400	63	195	3,1	20	<u> </u>										irie
80	0	960	720	500	80	203,2	3,2	21			i				İ	i – – –			1 ″
					,	· · · ·		ـــــــــــــــــــــــــــــــــــــ		n cooffi	ionte	0							

NOTE

- no executions for PN250...CL2500 1. 💽

2. Quick-opening valves (S) - only for maximum values of Kv_s for individual DN.

ALLOWABLE PRESSURE DROPS Δp .

Pressure drops Δp [bar] in Tables 13 apply to closed valve and they are calculated with account for the valve drive performance. Actual pressure drops should not exceed 70% of allowable working pressure for given nominal pressure, material execution and working temperature, as per tables 3...9.

 $\Delta p = \frac{Fs - F_{D}}{0.785 \cdot 10^{-4} \cdot D^{2}} \quad \text{or} \quad Fs = 0.785 \cdot 10^{-4} \cdot D^{2} \cdot \Delta p + F_{D}$

where

Tabel 12: Available force Fs [kN] of pneumatic actuators

	Dir	ect actuator P ;	P1			Reverse act	uator R ; R1		
Actuator	Sup	oply pressure [k	:Pa]			Spring ra	nge [kPa]		
size	140	250	400	20 - 100	40 - 120; 40 - 200	60 - 140	80 - 240	120 - 280	180 - 380
160	0,64	2,4	4,8	0,32	0,64	0,96	1,28	1,92	-
250	1,0	3,8	7,5	0,5	1,0	1,5	2,0	3,0	-
400	1,6	6,0	12,0	0,8	1,6	2,4	3,2	4,8	-
630	2,5	9,5	18,9	1,3	2,5	3,8	5,0	7,6	11,3
R-630T	-	-	-	2,6	5,0	7,6	10,0	15,2	22,6
1000	4,0	15,0	30,0	2,0	4,0	6,0	8,0	12,0	18,0
1500	6,0	22,5	45,0	3,0	6,0	9,0	12,0	18,0	27,0
1500T	12,0	45,0	90,0	6,0	12,0	18,0	24,0	36,0	54,0

NOTE:

1. For direct actuators P, P1 adopted spring range is 20 - 100kPa.

2. For electric and other actuators Δp value can be calculated using above formula and figures from Tables 11, taking nominal load capacity as available force Fs, as per actuator catalog chart

<u> </u>			Spring	Air-to range	-close 201	00 kPa							Air-to	-open					
nete	e		V class			V class				IV (lass					V c	255		
dian [r	r siz		Sunr	olv nreg	l SSUIRA	[kPa]			S	nring ra	nne [kP:	1			S	nring ra	nae [kP:	a]	
eat ([mm	lato		Oup										0						0
ve s	Acti	140	050	400	140	050	400	100	20(140	24(.28	.38	100	12(14(24(.28	.38
Val		140	200	400	140	200	400	0	0.0		0	20	30	0	0	0	0	20	<u>3</u> 0
										9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷	÷		44	9	8	÷	÷
			(=0								∆p [bar]								
do 10.7	160	24	1/3	280	-	85	2/4	9 22	61	100	85	135	-	-	-	- 15	-	4/	-
uu 12,7	400	107	273	- 200	23	280	- 200	47	110	173	236	210	-	-	- 22	85	148	274	-
	160	11	73	157	-	14	99	-	11	23	34	56	-	-	-	-	-	-	-
19,05	250	24	118	240	-	62	190	7	24	41	58	93	-	-	-	-	-	36	
	400	45	196	280	-	14	280	17	45	72	100	155	-	-	-	15	43	98	
	160	9	62	133	-	7	79	-	9	19	28	47	-	-	-	-	-	-	-
00.04	250	20	100	210	-	48	159	5	20	34	49	78	-	-	-	-	-	26	-
20,64	400	37	100	280	-	115	280	14	3/	102	84	131	- 200	-	- 11	9	32	162	-
	B-630T		-	200	-	- 210	- 200	65	140	216	280	210	280	- 11	86	162	237	280	280
	160	4	40	87	-	-	43	-	4	11	17	30	-	-	-	-	-	-	-
	250	12	67	142	-	23	98	2	12	22	32	52	-	-	-	-	-	8	-
25,25	400	24	112	232	-	68	188	8	24	40	56	88	-	-	-	-	12	44	-
	630	42	180	280	-	136	280	17	42	67	92	143	218	-	-	23	48	98	174
	R-630T	-	-	-	-	-	-	42	92	143	193	280	280	-	48	98	149	249	280
	160	1,5	24	54	-	-	19	-		10	9	1/	-	-	-	-	-	-	-
31 72	200	0 14	41 70	145	-	2 34	53 110	-	14	24	34	54	-	-	-	-	-	- 10	-
01,72	630	25	113	232	-	78	197	10	25	41	57	90	137	-	-	6	21	54	101
	R-630T	-	-	-	-	-	-	25	57	89	121	185	280	-	22	54	85	149	245
	160	-	13	31	-	-	3	-	-	2	4	9	-	-	-	-	-	-	-
	250	2	23	51	-	-	24	-	2	6	10	17	-	-	-	-	-	-	-
41,25	400	7	40	84	-	12	57	1	7	13	19	31	-	-	-	-	-	3	-
	630 D 620T	13	63	130	-	35	102	4	13	22	31	49	164	-	-	-	3	21	48
	630	9	- 43	90	-	- 21	- 69	25	<u> 32</u>	15	21	34	53	-		-	40	12	30
50.8	1000	16	71	146	-	49	124	6	16	26	36	56	86	-	-	4	14	34	64
,-	1500	25	107	218	3	85	196	10	25	40	55	84	129	-	3	18	33	62	107
	630	4	24	50	-	6	33	-	4	8	11	18	29	-	-	-	-	-	11
66,7	1000	8	40	83	-	22	65	3	8	14	20	31	48	-	-	-	2	14	30
	1500	14	61	125	-	44	108	5	14	23	31	48	74	-	-	5	14	30	56
00 0	1000	1,5	12	28	-	- 10	15	-	1	3	5	9 17	16	-	-	-	-	- 5	3
00,9	1500	4	34	70	-	21	58	3	4	12	17	27	<u> </u>	-	-	-	- 5	14	29
	1000	3	14	30	-	4	20	-	3	5	7	11	18	-	-	-	-	1	8
107,92	1500	5	23	47	-	13	37	1	5	8	11	18	28	-	-	-	1	8	17
	1500T	11	48	96	1	37	86	5	11	18	24	37	57	-	1	8	14	27	47
	1000	1,5	10	22	-	1	13	-	1	3	4	7	12	-	-	-	-	-	3
126,95	1500	3	16	34	-	8	25	-	3	6	8	13	20	-	-	-	-	4	11
	10001	Ŭ 05	<u>ა</u> 4	12	-	20	6	<u> </u>	Ŭ	1 1	/ つ	21 	41	-	-	4	9	١ŏ	33
158 72	1500	2	10	21	-	3	14	-	2	3	5	8	12	-	-	-	-	1	6
	1500T	5	21	44	-	14	37	2	5	8	10	17	26	-	-	1	4	10	19
105	1500	-	7	14	-	-	8	-	1	2	3	5	8	-	-	-	-	-	2
190	1500T	3	14	29	-	8	23	1	3	5	7	11	17	-	-	-	1	5	11
203.2	1500	-	6	13	-	-	7	-	-	2	3	4,5	7	-	-	-	-	-	2
i '		া ব	13	1 27	I -	1 (- 1	I J	1 4.5	I D	10	1 10		- 1	-	-	1 3	i 10

Table 13: Pressure drops Δp [bar] for valves with pneumatic actuators, leakage class class IV and V

NOTE:

1. In Table 13, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%. Pressure drops chosen that way guarantee internal tightness of closing of the valves.

2.In valves working along the procedure: "increased control pressure – valve opens", the actuator with springs ranged 40-120 kPa can be replaced with an actuator ranged 40-200 kPa, with the same pressure drops.
3. For reverse-working actuators (type R or R1), supply pressure should be higher than the upper spring range by at least 40kPa.

NOISE REDUCTION:

Should noise due to cavitation or aerodynamic phenomena exceed level acceptable by customer, it can be reduced by applying the following solutions:

- perforated valve plugs (Fig. 1 and Table 11)

- silencier plates on valve outlet and/or inside of reduction joint (Fig. 3, 4 and Table 14)

- - reduction ends (diffusers) - (Fig.4).

Table 14. Dimensions and flow ratios for silencer plates.

DN	15	20	25	40	50	80	100	150	200	250	300	350
	4	6,3	10	25	40	94	160	320	500	800	1000	1500
Kuo	3,6	5,7	9	22,5	36	84	144	288	450	720	900	1350
rvs	3,2	5	8	20	32	75	128	256	400	640	800	1200
	2,8	4,4	7	17,5	28	66	112	224	350	560	700	1050
L [mm]		5		(6	1	0	1	5		20	
Dp [mm]	45	58	68	88	102	138	162	218	285	345	410	465

Multi-plate silence kits are custom-built for requirements of individual processes.

DIMENSIONS AND WEIGHTS

Valve with welding ends SW (DN15...50)

Valve with welding ends BW

Fig. 5. Valve connection dimensions

	Tab	le 15a	: Cont	rol va	lves c	onne	ction c	limen	sions										
Γ	DN			15	.25					4()					50			
	PN/CL	PN10 CL300	PN63 CL600	CL900; PN160	PN250; CL1500	PN320	PN400; CL2500	PN10 CL300	PN63 CL600	CL900; PN160	PN250; CL1500	PN320	PN400; CL2500	PN10 CL300	PN63 CL600	CL900; PN160	PN250; CL1500	PN320	PN400; CL2500
Γ	B max	63	70	7	5	80	90	75	85	9	3	98	110	83	98	10)8	105	118
ľ	DS	1:	35	149	[]	193		14	45	172		214		15	55	175		237	
I	C DW	30	06	320		364		3	16	348		385		32	26	345		402	
I	DM	254	-	-	-	-	-	254	-	-	-	-	-	270	-	-	-	-	-
ľ	Weight	8	8,	5		9,5		15,5	17,5	19	20	22	23	22	25	28	31	33	34
ŀ	[Kg]					-													
Ļ																			
	DN			8	0			ļ		10	0					150			
	PN/CL	PN10 CL300	PN63 CL600	CL900; PN160	PN250; CL1500	PN320	PN400; CL2500	PN10 CL300	PN63 CL600	CL900; PN160	PN250; CL1500	PN320	PN400; CL2500	PN10	.CL300	PN63	.CL600	CL900	;PN160
ſ	B max	105	145	120	133	138	153	128	138	145	155	168	185	16	60	17	78	1	90
ſ	DS	2	06	233		257		2	17	252		329			287			3	65
I	C DW	3	75	402		447		4	07	442		498			426			4	83
I	DM	405	-	-	-	-	-	405	-	-	-	-	-	47	70	-			-
ſ	Weight	40	43	44	50	51	52	65	72	75	86	89	95	1:	32	14	17	1	56
ŀ							I	1											
ł	DN			20	0					25	0			DN30) - spec	ial exe	ecutio	n.	
ŀ										PN10	.CL300			tochni	cal data	2000	rdina	to	
I	PN/CL	PN	110CL3	00	PN	163CL6	500	PN10	.CL300	(kv8	300)	PN63.	CL600	ic di si d		acco	luing	10	
Ī	B max		190			235			25	58		2	55	individual inquiries.					
ſ	DS			43	9					45	8	•		(table: 15a and 15b).					
	C DW			53	9					55	8								
	DM		580			-		5	80	66	60		-						
	Weight [ka]		195			220		3	20	33	30	3	60						

NOTE: Weight of valve with standard bonnet and without actuator.

Table 15b: Control valves connection dimensions

DN	1550	4050	80100	80; 100	100	1	50	200		200; 250		25	50
Kvs 1)	0,116	25.	40	63; 94	125; 160	63160	250; 320	94	125; 160	250; 320	500	630	800
Stroke		20			38		50	3	8	50	6	3	80
d ₁	M12x1,25				M16x1,5		M20x1,5	M16	5x1,5	M20x1,5		M24x1,5	
$d_2^{(2)}$		2	57,15 / 1/4"-16UN2	A		84 3 5/16"	,15 / -16NS2A			95,2 3 3/4"-1	5 / 2UN2A		
d ₃	1:	2		16			20			24	ţ		
Actuator		160 250 400 630 R-630T			630 1000 1500		1000 1500 1500T	10 15	000	100 150 150	00 00 0T	15 150	00 00T

NOTE:

 $^{\mbox{\tiny 1)}}$ Kvs value for contoured plugs L and P. For other plugs Kvs as per Table 11 for same seat diameter.

²⁾ For DN80 and DN100 valves with TA-LUFT packing $d_2 = 84,15$

					Dim	ension A [mr	n]				
DN			PN / DIN					C	L		
	10; 16; 25; 40	63 - 100	160	250 - 320	400	CL150	CL300	CL600	CL900	CL1500	CL2500
15	130	230*	230*	260*	300*		190	203	236		
20	150	220	220	260	300	184	194	206	241	273	308
25	160	230	230	200	300		197	210	248		
40	200	260	260	300	350	222	235	251	270	311	359
50	230	300	300	350	400	254	267	286	311	340	400
80	310	380	380	450	500	298	317	336	387	460	498
100	350	430	430	520	580	352	368	394	464	530	575
150	480	550	550	**	* *	451	473	508	556	**	**
200	600	650	**	**	* *	543	568	610	**	**	* *
250	730	775	**	**	* *	673	708	752	* *	**	**
300			spec	ial execution	, technica	data accor	ding to indi	vidual inquir	ries		
V	vith B seat (F	RE) For c	ther des	iona dina an							
ble17. Body typ	Algorithms - wit - wit - wit	for calcu th groove th recess th ring-joi	Iation of nt	control va	Ision A ₁ Ive body	can be ca	Iculated u or valves	using relat	tions pres jed end:	A,	Table 1
ible17. Body typ	Algorithms - wit - wit - wit e and identification	for calcu th groove th recess th ring-joi	nt nt	control va	Ive body	can be ca	liculated u or valves DN	using relat	tions pres	A 1	Table 1
Ible17. Body typ V V	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF)	for calcu th groove th recess th ring-joi	nt Pro	control va control va essure CL CL300 CL600 CL900 CL900 CL2500	Ive body	can be ca	DN	using relat	tions pres jed end: A ₁	$\frac{A_{1}}{A_{1}} = A + 5 \times 2$	Table 1
able17. Body typ W	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF)	for calcu th groove th recess th ring-joi	nt Pro	essure CL CL300 CL600 CL900 CL1500 CL2500	lve body	can be ca	DN 15250	using relat	tions pres jed end: A_1 A_1 A_1	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 : A + 5,5 × 2	Fable 1
able17. Body typ V	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF)	for calcu th groove th recess th ring-joi	nt Pro	control va control va essure CL CL300 CL600 CL900 CL1500 CL2500 CL300	Ive body	can be ca	DN 15250 15 2040	using relat	tions pres jed end: $A_{1} = A_{1} = A_{2} = A_{2}$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2	Fable 1
able17. Body typ V	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF)	for calcu th groove th recess th ring-joi	nt Pro	control va control va essure CL CL300 CL900 CL900 CL900 CL2500 CL300 CL150	Ive body	can be ca	DN 15250 15250 15250	using relat	tions pres jed end: A_1 $A_1 =$ $A_1 =$ $A_1 =$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2	Fable 1
Body typ	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF)	for calcu th groove th recess th ring-joi	nt Pro	control va essure CL CL300 CL600 CL900 CL1500 CL2500 CL300 CL150 CL300	Ive body	can be ca	DN 15250 15250 15250 50250	using relat	tions pres jed end: A_1 $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2 = A + 8 × 2	Fable 1
able17. Body typ W	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) ith ring-ioint	for calcu th groove th recess th ring-joi	nt Pro	control va control va essure CL CL300 CL900 CL900 CL1500 CL2500 CL300	Ive body	can be ca	Iculated u or valves DN 15250 15250 50250 1540	using relat with flang	tions pres jed end: A_1 $A_1 =$ $A_1 =$ A_1	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2 = A + 8 × 2 A_{1} = A	Fable 1
able17.	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) ith ring-joint J / (RTJ)	for calcu th groove th recess th ring-joi	nt Pro	Control va control va essure CL CL300 CL900 CL900 CL1500 CL300 C	Ive body	can be ca	DN 15250 15250 15250 15250 15250 15250	using relat with flang	tions pres jed end: A_1 $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2 = A + 6,5 × 2 = A + 8 × 2 A_{1} = A	Fable 1
able17. Body typ V V	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) ith ring-joint J / (RTJ)	for calcu th groove th recess th ring-joi	nt lation of the second	Control va control va essure CL CL300 CL600 CL900 CL1500 CL300 C	Ive body	can be ca	DN 15250 15250 15250 15250 15250 15250 15250	using relat with flang	tions pres jed end: A_1 $A_1 =$ $A_1 =$ $A_1 =$ A_1	Sented in $\frac{A_1}{A_1}$ = A + 5 x 2 = A - 1,5 x 2 = A + 5,5 x 2 = A + 6,5 x 2 = A + 6,5 x 2 = A + 8 x 2 A_1 = A	Fable 1
able17.	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) Ith ring-joint J / (RTJ)	for calcu th groove th recess th ring-joi		Igns dimer control va essure CL CL300 CL900 CL1500 CL2500 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL900 CL2500 CL2500 CL2500 CL2500 CL2500 CL2500 CL2500 CL2500	Ive body	can be ca	Iculated u or valves 1 DN 15250 15250 15250 15250 15250 50250 50250 50250	using relat with flang	tions pres jed end: A_1 $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_2 =$ $A_3 =$ $A_1 =$ $A_2 =$ $A_3 =$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2 = A + 6,5 × 2 = A + 8 × 2 A_{1} = A	Fable 1
able17.	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) ith ring-joint J / (RTJ)	for calcu th groove th recess th ring-joi		Igns differ control va essure CL CL300 CL600 CL900 CL300 CL4500 CL900 CL500 CL2500 CL2500 CL900 CL900 CL900	Ive body	can be ca	DN 15250 15 2040 15250 15250 15250 15250 50250 50250 50250	using relat with flang	tions pres led end: A_1 $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_1 =$ $A_2 =$	$A_{1} = A + 5 \times 2$ = A - 1,5 × 2 = A + 5,5 × 2 = A + 6,5 × 2 = A + 6,5 × 2 = A + 8 × 2 A_{1} = A = A + 1,5 × 2	Fable 1
Body typ	Algorithms - wit - wit - wit e and identification PN / ANSI Vith groove DL / (GF) Vith recess F / (FF) ith ring-joint J / (RTJ)	for calcu th groove th recess th ring-joi		Igns dimer control va essure CL CL300 CL600 CL900 CL1500 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL300 CL900 CL900 CL900 CL900 CL900 CL900 CL900 CL900 CL900 CL900 CL900	Ive body	can be ca	DN 15250 15250 15250 15250 15250 15250 50250 50250 50250 50250 50250 50250 50250	using relat with flang	tions pres jed end: A_1 $A_1 =$ $A_1 =$ A_1 $A_1 =$ $A_1 =$ A	Sented in A_1 = A + 5 x 2 = A - 1,5 x 2 = A + 5,5 x 2 = A + 6,5 x 2 = A + 6,5 x 2 = A + 8 x 2 A_1 = A = A + 1,5 x 2 = A + 3 x 2	Fable 1

Table 18: Control valve length, welding ends.	
---	--

		Dimension A [mm]	
DN		Nominal pressure	
	PN 10CL600	CL900PN160	PN250CL2500
15; 20; 25	210	230	300
40	251	260	350
50	286	300	400
80	337	380	500
100	394	430	580
150	508	550	* *
200	610	* *	* *
250	752	**	**
300	special execution	on, technical data according to ind	ividual inquiries
** hi	gher nominal pressures available	after agreement with the manufact	urer

Table 18 contains series of example butt welding connections.

It is allowed to execute connections for other dimensions of pipes. Should pipe dimensions fall within the range $\emptyset B \min / \emptyset A \max$. (Fig. 6, Table 20), connection can be executed as cast. Otherwise reduction stub is to be welded to body end, which shall result in extension of housing by L or 2L size (Fig.7, Tabel 20). Other connection dimensions are allowed upon consulting with manufacturer.

Table 20: Dimensions of non-processed butt welding ends (executed as cast) and lengths of reduction stubs.

DN	Pressure	A max	B min	L	
15 25	PN 1040, CL 150, 300	38	20		
	PN 63100, CL 600	48	20		
	PN 160, CL 900	40	23		
	PN 250400, CL 1500,2500	48	23		
	PN 1040, CL 150, 300	64	42		
40	PN 63100, CL 600	75	42	50	
40	PN 160, CL 900	66	38		
	PN 250400, CL 1500,2500	66	28		
	PN 10100, CL 150600	80	55		
50	PN 160, CL 900	80	50		
	PN 250400, CL 1500,2500	92	42		
	PN 1040, CL 150, 300	110	82		
00	PN 63100, CL 600	122	82		
00	PN 160, CL 900	111	76		
	PN 250400, CL 1500,2500	127	56	75	
	PN 10100, CL 150600	144	102		
100	PN 160, CL 900	144	102		
	PN 250400, CL 1500,2500	165	81		
	PN 1040, CL 150, 300	183	160		
150	PN 63100, CL 600	196	160	100	
	PN 160, CL 900	217	154		
200	PN 1040, CL 150, 300	243	200		
200	PN 63100, CL 600	248	200	150	
250	PN 1040, CL 150, 300	291	248	130	
	PN 63100, CL 600	346	248		

Fig. 6. Dimension of butt welding ends executed as cast

Fig. 7. Reduction stub

Table 21: SW socket welding ends					
DN	D_2	К			
15	21,7	9,7			
20	27				
25	34	13			
40	48,7				
50	61	16			

VALVE ACTUATOR:

Pneumatic:	ic: - diaphragm multi-spring actuator as per Table 22:			
	P1/R1	 cast yoke, no handwheel 		
	P1B/R1B P/R PN/RN	 cast yoke, side-mounted handwheel column type, no handwheel column type, top-mounted handwheel 		

NOTE:

- direct action; air-to-close

- reverse action; air-to-open

Table 22: Pneumatic actuators

P R

Туре	Size	Diaphragm effective area [cm ²]	Stroke [mm]	Revolutions per stroke	
	160	160		5	
P/R, PN/RN	250	250	20		
	400	400			
P1/R1 ; P/R ;	630	630	20.20	5 ; 9	
P1B/R1B ; PN/RN	R-630T *)	2 x 630	20,30		
	1000	1000	38 ; 50 ; 63	8 ; 10 ; 13	
P1/R1 ; P1B/R1B	1500	1500	28 - 50 - 62 - 80- 100	0 • 10 • 10 • 10 • 00	
	1500T	2 x 1500	38;50;63;80;100	8;10;13;16;20	
*) - there are no top mounted handweel for R-630T					

Table 23: Sizes and weights of pneumatic actuators P/R and PN/RN - Fig. 8.

Actuator cizo	D ₁	D ₂	H ₁	H ₂	Weight [kg]	
Actuator Size	mm				P/R	PN/RN
160	210	225	306	468	9	13,5
250	240		324	486	10	14,5
400	305		332	494	16	20,5
630	275	305	424	586	30	37
R-630T	375	-	638	-	45	-
1000	477	450	607	847	74	100
1500	550	-	704	-	95	-
1500T		-	1008	-	200	-

Table 24: Sizes and weights of pneumatic actuators P1/R1 and P1B/R1B - Fig. 9.

Actuator size	В	D ₁	D ₂	Н	Weigł	nt [kg]
Actuator Size		m	m		P1/R1	P1B/R1B
400	255	305	225	453	20	28
630	280	375	305	548	40	50
1000	340	477		773	85	105
1500	410	550	450	833	120	150
3000	410	550		1138	225	255

Table 25: Handwheel	s series 20 ·	- types, sizes an	d weights.				
Туре	Stroke [mm]	d,	d d	Н	D	rev./stroke	Weight [kg]
20-20-57-M12	20	M10v1 05	57,15		000	0	7 6
20-20-84-M12	20	IVI 1 2X 1,25	84,15		228	ŏ	7,5
20-38-57-M16			57,15	265			
20-38-84-M16	38	M16x1,5	84,15]	298	15	10
20-38-95-M16]		95,25				
20-50-84-M20	50		84,15			16	
20-50-95-M20	50	1012021,5		385	457	10	16
20-63-95-M24	63		95,25			20	
20-80-95-M24	80	IVI∠4XI,J		533	610	19	24

Marking:

Example: 20-38-57-M16 - manual drive type 20; stroke - 38mm; d₂=57,15mm; d₁=M16x1,5

SPECIAL OPTIONS:

- oxygen and hydrogen option:

Application of adequate materials, mechanical and chemical cleaning, inspections and assembly ensure compatibility with oxygen and hydrogen flows.

- low temperature fluid option:

Application of adequate materials and special bonnet design ensures reliable isolation of valve drive from the impact of low temperatures. Used mostly for liquid oxygen and liquid nitrogen.

- acid gas option:

Parts of valve can be made of materials and under conditions to enable valve operation with gases of H_2S content as per NACE MR-0175.

- heat jacket option:

Design and technical parameters as per customer's specification.

- tight valve-seat option:

When class VI tightness is required (up to $\Delta p \leq 35$ bar)

- valves with non-cast bodies:

If a special construction of the valve body is needed, it is possible to design a valve for individual customer's needs (angle valves – type L and Z).

MARKING EXAMPLE:

Control valve type Z1A with reverse action pneumatic actuator with a top-mounted handwheel, extension bonnet, expanded graphite stem packing, leakage class IV, choke cage, equal percentage contoured plug, execution in alloy steel:

RN-Z1A-2E471P4

Marking is shown on valve nameplate.

Additionaly, it shows:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- plug stroke fluid group [1 or 2],
- serial number and year of manufacture.

ORDERING:

The order should contain all information as per data questionnaire. Full information can be obtained from the Sales and Marketing Department or Technical and Development Department.

www.polna.com.pl

SINGLE-PORTED GLOBE CONTROL VALVES **TYPE Z1A®** Design solutions for special applications

INTRODUCTION:

Product versions of valves type Z1A include numerous special executions adjusted especially for particular requirements of installations, in which they are to be installed.

The flow of fluid through the valve (depending on the kind and parameters of the fluid) may cause phenomena having a negative impact on the environment and be destructive to the product's durability.

It often happens that process parameters require application of valves designed strictly for flow parameters, so as to eliminate the occurrence of such phenomena as cavitation, chocked flow, noise and to prevent erosion of internal parts.

This catalogue card presents some of most commonly used valve designs, which are comprised in Z1A series, but being special executions, were not included in the main catalogue card of Z1A valves.

Valve with profile plug and pressuring cage

Valves with two-step plugs are designed for eliminating cavitation and chocked flow. Each step of throttling has been precisely selected, so as to generate pressure drops below critical values at each point of work. Valve's internal parts are toughened or stellited and nitrided.

Valve with two-step plug and throttling cage

Valves with two-step plugs are designed for eliminating cavitation and chocked flow. Second throttling cage is to implement additional throttling step and to reduce the noise level through multihole structure. Valve's internal parts are toughened or stellited and nitrided.

Valve with three-step plug and throttling cage

Valves with three-step plugs are designed for eliminating cavitation and chocked flow for higher pressure drops than valves with two-step plugs. Additional throttling cage is to implement additional throttling step and to reduce the noise level through multihole structure. Valve's internal parts are toughened or stellited and nitrided.

Valve with multi-step plug

Valves with multi-step plugs are designed for highest pressure drops. Valve's internal parts are toughened or stellited and nitrided, and for most demanding service they are made of ceramics or titanium.

Valve with multi-step plug for micro-flow

Valves for micro-flows are manufactured with multi-step plugs, which are toughened or made of full stellite. Step-seat is made from toughened stainless steel with stellite inserts. This design allows for precise flow regulation with coefficient below Kv 0,02.

Valve with reverse flow (FTC) for flashing

Valves with fluid flow over the plug (FTC) are used for service with full evaporation (flashing). A protective cage with conical insert is mounted under the seat aiming at protection of valve body bottom against erosion. All internal parts are made of highly toughened stainless steel.

Valves DN150-300 for nominal pressures PN160-420

Valves for nominal pressures higher than those in the main catalogue card of Z1A valves are made available upon customised requests. Due to large bonnet diameter and high pressure, the packing system in a form of conical self-tightening (under pressure) seal was used. Product versions with profile and perforated plugs in different materials are available.

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

DOUBLE-PORTED CONTROL VALVES TYPE Z1B®

APPLICATION AREA:

Single-ported globe control valves type Z[®]1B are used in automatic and remote control instalations as flow control elements to adjust flow of liquids, steam and gases. Wide range of materials, excellent pressure and temperature parameters, multiple design variants, meeting requirements of various processes, make the valves applicable under the most demanding working conditions in power generation, petroleum chemistry, heating, chemical industry, metallurgy, etc. Versions designated for Western Europe market can be marked BR12.

FEATURES:

• various materials of valve body and internal parts, adapted to specific working conditions,

• design provides noise reduction, enhanced resistance to cavitation and flashing, and elimination of choked flow,

• wide range of nominal pressures, PN10 to CL2500, and flow ratio and control characteristics,

• reduction in aggressive and toxic media emissions to environment through application of bellow seal bonnets or bonnet packings meeting requirements of TA - LUFT,

• easy assembly and dismantling of valve internal parts for maintenance and service,

• high durability and reliability due to application of top-class materials and surface improvement processes (burnishing, stelliting, heat treatment, CrN coatings).

• possibility of mating with reverse action P/R (column) and P1/R1 (cast yoke) multi-spring actuators, and changing the spring range with no extra parts (keeping the number of springs),

- possibility of fitting actuators with lateral (P1/R1) or top (P/R) handwheel,
- possibility of performing diagnostics of "valve-actuator" due to application of smart electro-pneumatic positioners,
- wide range of electric actuators,
- special executions for oxygen, hydrogen, gas fuels, low temperature fluids (liquid oxygen, liquid nitrogen), acid gases containing H₂S; with heat jacket; for explosive atmospheres as per ATEX Directive 94/23/EC,
- design and production process meet the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines.

Z1B[®] is a trademark registered with Republic of Poland Patent Office.

DESIGN AND TECHNICAL SPECIFIACTION:

Body (1): single-ported, cast

Nominal size: DN 25; 40; 50; 80; 100; 150; 200; 250; 300 Nominal pressure:

• PN10; 16; 25; 40; 63; 100 (as per PN-EN 1092-1:2010)

• PN-H-74306:1985; PN-H-74307:1985.

• CL150; CL300; CL600; CL900; CL1500; CL2500 (as per PN-EN 1759-1:2005). divided as follows:

DN25...250: PN10...100; CL150...CL600 *) DN25...150: CL900; PN160 *)

DN25...100: PN250...400; CL1500...CL2500 *)

> CL900: PN 150 CL2500: PN 420

*) higher nominal pressures available after agreement with the manufacturer Connections:

- flanged: as per Table 1

- butt welding ends BW, as per Table 19 and 20

- socket welding ends SW, as per Table 21

Steel flanges CL150; CL300; CL600; CL900; CL1500; CL2500 are so designed that they can be assembled with flanges as per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. CL300: PN 50

Equivalent identification as per PN are:	CL150:	PN 20
	CL600:	PN 110
	CL1500:	PN 260

Table 1. Flanged end connections

			Facing o	f flange types							
Nominal pres	ssure	Raised face	Groove	Recess	Ring - joint						
			lder	itification	^						
PN10; 16; 25; 40; 63; 100;	160; 250; 320; 400	B ³⁾	D 1)	F 1)	-						
CL150; 30	00	B ³⁾	DL (D1 ²)	F (F1 ¹)	J (RTJ)						
CL600; 900; 150	00; 2500	B 3) (RF)	DL (GF)	F (FF)	J (RTJ)						
¹) - do PN160; ²) - tylk	o dla CL300; ³) - B1 – (R	a=12.5 mm, concentri	c surface structure "C"), B2 – (Ra as agreed v	with the customer);						
	() - iden	tification of connection	<u>ns as per ASME B16.5</u>								
	Possible executio	on of flanges per specif	ication and indicated s	tandards							
Face-to-face dimensions:	- flanged valves as p	per PN-EN 60534-3	3-1; PN-M-74005; I	SA S75.16-1993; F	ig. 5; Table 16; 17						
	- welding ends valv	es; Fig. 5; Table 1	8								
	- as per PN-EN 605	534-3-3: for PN	10100 and CL	150600							
	- as for flanged valv	ves PN 160: for F	PN 160 and CL9								
Matariala	- as for flanged valv	alves PN 400: for PN 250400 and CL15002500									
Materials:	- as per Table 2;			Table O	0						
Downot (2):	Relationship betwe	en working pressi	ure and temperatu	ire as per Table 3.	9.						
Bonnet (2):	- standard										
	- extension bollows cool (DNI		200)								
Valvo plug (3a h c):	- Dellows Seal (FIN)	ded hard Pange	ooo) ability: 50:1								
valve plug (Sa,b,c).	- variants:	deu, naru. Range	unhalanc	JUD21							
	- vanants.		halanced	unbalanced, balanced (from DN40 - K 25)							
			balanced	with nilot (from Γ	lot, (from DN50 - K_{u} 40)						
	- flow characteristic	'S'	vs ro)								
		linear - I									
Valve seat (4):	- fitted-in and sealed	d with body, hard (ti	ight seat after cons	ulting the manufac	turer)						
Valve plug stem (5):	- burnished, polishe	ed sealing face.	0	0	,						
Control cage (6A):	- perforated elemer	nt executing prese	t flow characterist	ics and fixing seat	t.						
Choke cage (6B,C):	- perforated valve s	eat fixture, causin	g reduction in pre	ssure drop betwee	en seat and plug.						
Body gasket (7), seat ga	sket (8), control ca	ge gasket (9): sp	iral, graphite+1.44	04 in all execution	ns.						
Stem packing (9):	- PTFE-V	packing, compres	sed with spring bo	olt (18a),							
	- ring gask	ets formed in brai	ided packing cord	s (PTFE +GRAPH	IITE),						
	- graphite l	kits (expanded and	silky graphite) or g	gaskets formed in b	praided graphite cords,						
	- TA-LUF1	F sealing with PTF	E-V packing kit c	or graphite kit; pao	cking structure as per						
	Fig.s 1 a	and 2, range of ap	plications as per 1	Table 10.							
Leakage class: (as per Pl	N-EN 60534-4)	(. L			,						
	-basic:	ic: (class IV) less than 0,01% Kv									
	-ennanced	d: (class V)	.	3•10 ⁻ D•∆p [cn	nº/minj						
	where D (nin) - is seat dian	ieter as per Table								
Eluid flow direction:	∆p [par]-∂	actual pressure di		t. An the plug for velve							
		Jug for valves as pe	a riy. Ta anu 10, 01		ез аз рег гіў. Т С						
FIOW COETTICIENTS:	as per la	Die 11.									

le 2. Part li	st with	materials											
	Item	Part			Materials								
	1	Body		GP 240 GH ; (1.0619) WCB	G17CrMo 9-10 ; (1.7379) WC9	GX5CrNiMo 19-11-2 ; (1.4408) CF8M							
			DN1550	S 355 J2G3 (1.0570)	13CrMo4-4 ; (1.7335)								
	2	Bonnet	DN80300	GP 240 GH ; (1.0619) WCB	G17CrMo 9-10 ; (1.7379) WC9	X6CrNiMoTi 17-12-2 ; (1.4571)							
	3a,b,c	Unbalance Balanced Balanced plu	d plug plug g (pilot)	X6C X	rNiMoTi 17-12-2; (1.4571) + st 17CrNi 16-2 ; (1.4057) + heat ti	ellite + CrN reatment							
	4	Seat		x x	X6CrNiMoTi 17-12-2; (1.45 6CrNiMoTi 17-12-2; (1.4571) (17CrNi 16-2; (1.4057) + heat tr	71) + stellite eatment							
	5	Stem		X6C X	X6CrNiMoTi 17-12-2; (1.45 rNiMoTi 17-12-2; (1.4571) + st 17CrNi 16-2 ; (1.4057) + heat t	71) ellite + CrN eatment							
	6A	Control o	age		VCC-NiMaTi 17 10 0: /1 /6	71)							
	6B	Choke ca	ige I	х	X6CrNIW011 17-12-2; (1.45 (17CrNi 16-2: (1.4057) + heat tr	/ I) eatment							
	60	Choke ca	ge II	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	7	Body gas	sket			a inc D							
	8	Seat gas	sket		GRAPHITE (98%) + 1.4404 (S	piral)							
	9	Control cage	gasket										
	10	Packing	kit		PTFE "V" (rings)								
	11	Pressing s	leeve		X6CrNiMoTi 17-12-2; (1.45	71)							
	12	Pressing	level		S 355 J2G3 (1 0570)								
		i rooonig	DN10 CL200	0 0	A 0000 0200 ; (1.0010)	1 70 *)							
	13	Body screw		0.0									
			PN63CL2500	X6NICT11VIOVB 25-15-2 (1.4980)									
	14	Body nut	PN10CL300	8.8	A	4 - 70 *)							
		body nut	PN63CL2500	42CrMo4 (1.7225)	21CrMoV5-7 (1.7709)	X6NiCrTiMoVB 25-15-2 (1.4980)							
	15	Bonnet s	crew	8.8	A	4 - 70 *)							
	16	Bonnet	nut	8.8	A	4 - 70 *)							
	17	Notched	neg		L X6CrNiMoTi 17-12-2: (1.45	71)							
	10.0 h	Caria	peg		() OD::10: ((1.45C0) (CAND)///	(1) Nimeria 00: (0.4000)							
	188,0	Sprin	y	12RTU (SANDVIK	(), 9RUTU; ((1.4568) (SANDVIK)); Nimonic 90; (2.4969)							
	19 20	Spacer si Guide sle	eeve	X6C X	X6CrNIMoTi 17-12-2; (1.45 rNiMoTi 17-12-2; (1.4571) + st 17CrNi 16-2 : (1.4057) + heat t	/1) ellite + CrN reatment							
	21	Plug n	ut		Y6CrNiMoTi 17-12-2: (1.45	71)							
	22	Plug sealin	a rina		Expanded graphite	(1)							
	23	Pilot	ginig		X105CrMo17: (1 4125)	· · · · · · · · · · · · · · · · · · ·							
	24	Back n	ut		X6CrNiMoTi 17-12-2: (1.45	71)							
			· · · ·	Relevant material	standards								
		Material			Standard								
		GP 240 GH ; (1.0	619)		PN-EN 10213-2								
		WCB	7070)		ASTM A 216	· · · · · · · · · · · · · · · · · · ·							
			.7379)		PN-EN 10213-2								
		GX5CrNiMo 19-11-2 ·	(1.4408)		PN_FN 10213-/								
		CF8M	(1.400)		ASTM A 351	· · · · · · · · · · · · · · · · · · ·							
		S 355 J2G3 : (1.0	570)		PN-EN 10025								
		13CrMo4-4; (1.7	335)		PN-EN 10028								
		X6CrNiMoTi 17-12-2 ;	(1.4571)	PN-EN 10088									
		X17CrNi 16-2 ; (1.	4057)	PN-EN 10088 PN-EN 10088 PN-EN 10083-1 PN-EN 10088 EN 20898-1 EN ISO 3506-2									
		X105CrMo17; (1.4	125)										
		C45 (1.0503)											
		X30Cr13 (1.402	28)										
		8.8											
		A4-70 *)											
		42CrMo4 (1.72	25)	EN 10269									
		21CrMoV5-7 (1.7											
		(6NiCrTiMoVB 25-15-	2 (1.4980)		EN 10269								
			,,										

NOTE:

*) to be applied for nominal pressures PN10...CL600

Hardening of valve internal surfaces comprises:

a) stelliting - padding of surfaces with stellite: ~40HRC

b) CrN coating – introducing chromium nitride to external layer of detail, to the depth of ca.0.1 mm:~950HV

c) heat treatment: valve plug (~45HRC), valve seat (~35HRC), stem (~35HRC), cages (~35HRC), guide sleeve (~45HRC), pilot (~55HRC).

Table 3	.9. Allowable	working over	pressure for	materials at	relevant	temperatures
---------	---------------	--------------	--------------	--------------	----------	--------------

Table 3.	Ma	iterial: GP2	40GH (1.0	619) as pe	r PN-EN 1	0213-2			
					Temperatu	re ['C]			
PN / CL	Standard	-1050	100	150	200	250	300	350	400
				Allowat	ole working	pressure (b	ar]		
PN10	EN 4000 4	10	9,2	8,8	8,3	7,6	6,9	6,4	5,9
PN16	EN 1092-1	16	14,8	14	13,3	12,1	11	10,2	9,5
CL150	PN-EN 1759-1	17,3	15,4	14,6	13,8	12,1	10,2	8,4	6,5
PN25	EN 1002 1	25	23,2	22	20,8	19	17,2	16	14,8
PN40	EN 1092-1	40	37,1	35,2	33,3	30,4	27,6	25,7	23,8
CL300	PN-EN 1759-1	45,3	40,1	38,1	36	32,9	29,8	27,8	25,7
PN63	EN 1002 1	63	58,5	55,5	52,5	48	43,5	40,5	37,5
PN100	EN 1092-1	100	92,8	88	83,3	76,1	69	64,2	59,5
CL600		90,5	80,2	76,1	72	65,8	59,7	55,5	51,4
CL900		136	120	114	108	98,7	89,5	83,3	77,1
PN160		160	148,5	140,9	133,3	121,9	110,4	102,8	95,2
PN250		250	232,1	220,2	208,3	190,4	172,6	160,7	148,8
CL1500	PN-EN 1/59-1	226	201	190	180	165	149	139	129
PN320		320	297,1	281,9	266,6	243,8	220,9	205,7	190,4
PN400		400	371,4	352,3	333,3	304,7	276,1	257,1	238
CL2500		377	334	317	300	274	249	231	214

NOTES:

- 1. It is allowed to apply carbon steel and acid proof cast steel for temperatures lower than given in Tables 3...9, provided that working pressure is reduced respectively, working temperature impact tests are performed and cast is heat treated. Details are to be consulted with manufacturer.
- 2. Working pressure for intermediate temperature values can be calculated by interpolation.
- Temperature range for flanged connections: up to +537°C, for welding connections: up to +650°C

Table 4.							Material:	G17CrN	lo 9-10 (1	.7379) as	per PN-E	N 10213-	2					
									Temp	erature ['C]							
PN / CL	Standard	-1050	100	150	200	250	300	350	400	425	450	475	500	510	520	530	540	550
								AI	lowable wo	rking press	ure [bar]							
PN10		10	10	10	10	10	10	9,7	9,2	9	8,8	7,6	6,4	5,6	4,9	4,2	3,7	3,2
PN16	-	16	16	16	16	16	16	15,6	14,8	14,4	14	12,1	10,2	8,9	7,8	6,8	5,9	5,1
CL150	PN-EN 1759-1	19,5	17,7	15,8	14	12,1	10,2	8,4	6,5	5,6	4,7	3,7	2,8	2,4	2	1,7	1,4	-
PN25	EN 1092-1	25	25	25	25	25	25	24,4	23,2	22,6	22	19	16	14	12,2	10,7	9,2	8
PN40	EN 1052-1	40	40	40	40	40	40	39	37,1	36,1	35,2	30,4	25,7	22,4	19,6	17,1	14,8	12,9
CL300	PN-EN 1759-1	51,7	51,5	50,2	48,3	46,3	42,8	40,2	36,6	35,1	33,8	31,7	28,2	26,6	23,5	20,6	17,8	15,5
PN63	EN 1002 1	63	63	63	63	63	63	61,5	58,5	57	55,5	48	40,5	35,4	30,9	27	23,4	20,4
PN100	EN 1052-1	100	100	100	100	100	100	97,6	92,8	90,4	88	76,1	64,2	56,1	49	42,8	37,1	32,3
CL600		103	103	100	96,7	92,6	85,7	80,4	73,1	70,2	67,6	63,3	56,4	53,3	47,1	41,1	35,7	31,1
CL900]	155	155	151	145	139	129	121	110	105	101	95	84,6	79,9	70,6	61,7	53,5	46,6
PN160]	160	160	160	160	160	160	156,1	148,5	144,7	140,9	121,8	102,8	88,9	78,4	68,5	59,4	51,8
PN250		250	250	250	250	250	250	244	232,1	226,1	220,2	190,4	160,7	140,4	122,6	107,1	92,8	80,9
CL1500	PN-EN 1759-1	259	258	251	242	232	214	201	183	175	169	158	141	133	118	103	89,1	77,7
PN320	1	320	320	320	320	320	320	312,3	297,1	289,5	281,9	243,7	205,7	179,8	156,9	137,1	118,8	103,6
PN400	1	400	400	400	400	400	400	390,4	371,4	361,8	352,3	304,7	257,1	224,7	196,1	171,4	148,5	129,5
CL2500		431	429	418	403	386	357	335	305	292	282	264	235	222	196	171	149	130
Table 5.							Material	: GX5Crl	NiMo 19-1	1-2 (1.44	08) as pe	r PN-EN 1	0213-4					
										Temperatu	re ['C]							
DN / CI	Standard	10 50	100	150	200	250	300	350	400	125	450	475	500	510	520	530	540	550

Table 0.							wateria	. 473011	11110 13-1	1-2 (1.44	00) as pe		0213-4						
										Temperatu	re ['C]								
PN / CL	Standard	-1050	100	150	200	250	300	350	400	425	450	475	500	510	520	530	540	550	600
									Allowab	le working	pressure [b	ar]							
PN10	EN 4000 4	10	10	9	8,4	7,9	7,4	7,1	6,8	-	6,7	-	6,6	-	-	-	-	6,5	5,6
PN16	EN 1092-1	16	16	14,5	13,4	12,7	11,8	11,4	10,9	-	10,7	-	10,5	-	-	-	-	10,4	8,9
CL150	PN-EN 1759-1	17,9	16,3	14,9	13,5	12,1	10,2	8,4	6,5	5,6	4,7	3,7	2,8	2,4	2	1,7	1,4	-	-
PN25	EN 1002 1	25	25	22,7	21	19,8	18,5	17,8	17,1	-	16,8	-	16,5	-	-	-	-	16,3	14
PN40	EN 1092-1	40	40	36,3	33,7	31,8	29,7	28,5	27,4	-	26,9	-	26,4	-	-	-	-	26	22,4
CL300	PN-EN 1759-1	46,7	42,5	38,9	35,3	32,9	30,5	28,8	27,6	27,2	26,9	26,6	26,4	26,3	22,5	22,4	22,3	22,2	
PN63	EN 1002 1	63	63	57,3	53,1	50,1	46,8	45	43,2	-	42,4	-	41,7	-	-	-	-	41,1	35,4
PN100	EN 1092-1	100	100	90,9	84,2	79,5	74,2	71,4	68,5	-	67,3	-	66,1	-	-	-	-	65,2	56,1
CL600		93,4	85	77,8	70,6	65,8	61	57,6	55,2	54,5	53,8	53,3	52,8	52,6	44,9	44,8	44,6	44,4	
CL900		140	127	117	106	98,6	91,4	86,4	82,8	81,7	80,6	79,9	79,2	78,9	67,4	67,1	66,9	66,7	
PN160		160	160	145,5	134,8	127,2	118,8	114,2	109,7	-	107,8	-	105,9	-	-	-	-	104,3	89,9
PN250		250	250	227,3	210,7	198,8	185,7	178,5	171,4	-	168,4	-	165,4	-	-	-	-	163	140,4
CL1500	PN-EN 1759-1	233	212	194	176	164	152	144	138	136	134	133	132	132	112	112	111	111	•
PN320		320	320	291	269,7	254,4	237,7	228,5	219,4	-	215,6	-	211,8	-	-	-	-	208,7	179,8
PN400		400	400	363,8	337,1	318	297,1	285,7	274,2	-	269,5	-	264,7	-	-	-	-	260,9	224,7
CL2500		389	354	324	294	274	254	240	230	227	224	222	220	219	187	187	186	185	-

Rev NoRev NoRev No<	Table 7.			Mater	al: WC	Basp	er ASTN	A216				1	Tabl	e 6.	Mater	ial: G2	20Mn5 (1.6220)	wg PN	J-EN 10	213-3					
Pick						Tem	perature ['C]										T	emperati	ure ['C]						
Image Image <thimage< th=""> <thimage< th=""> <thi< td=""><td>PN/CL</td><td>Standard</td><td>-1050</td><td>100</td><td>150</td><td>200</td><td>250</td><td>300</td><td>350</td><td>375</td><td>400</td><td>]</td><td>PN /</td><td>CL</td><td>Norma</td><td></td><td>-40</td><td>100</td><td>150</td><td>200</td><td>250</td><td>300</td><td></td><td></td><td></td></thi<></thimage<></thimage<>	PN/CL	Standard	-1050	100	150	200	250	300	350	375	400]	PN /	CL	Norma		-40	100	150	200	250	300				
image imageimage image image image image image image image image imageimage image image image image image imageimage image image image image image imageimage image image image image image imageimage image image image image image imageimage image image image imageimage image image imageimage image image image imageimage image image image image imageimage image image image imageimage image image image imageimage image image image imageimage image image image image imageimage image imageimage image imageimage image imageimage image image imageimage image image 				1	Allo	wable wo	rking pre	ssure [ba	r]			1	DN				6	Allowable	e working	pressur	e [bar]	24				
m m	PN10	EN 1092-1	10	10	9,7	9,4	9	8,3	7,9	7,7	6,7	{	PN	6			16	16	10,1	9,6	9,28	9,07				
<tb> 1000000000000000000000000000000000000</tb>	CL150	PN-EN 1759-1	19,3	17,7	15,8	14	14,4	10,2	8,4	7,4	6,5	1	PN2	25			25	25	15,8	15	14,5	14,2				
Image	PN25		25	25	24,4	23,7	22,5	20,9	20	19,4	16,9	1	PN4	10	-		40	28	28	27	26	25				
	PN40	EN 1092-1	40	40	39,1	37,9	36	33,5	31,9	31,1	27]	PN	53			63	59	58	55	53	51				
Image Image <t< td=""><td>CL300</td><td>PN-EN 1759-1</td><td>50</td><td>46,4</td><td>45,1</td><td>43,9</td><td>41,8</td><td>38,9</td><td>36,9</td><td>36,6</td><td>34,6</td><td>1</td><td>PN1</td><td>00</td><td></td><td></td><td>100</td><td>95</td><td>92</td><td>87</td><td>85</td><td>82</td><td></td><td></td><td></td></t<>	CL300	PN-EN 1759-1	50	46,4	45,1	43,9	41,8	38,9	36,9	36,6	34,6	1	PN1	00			100	95	92	87	85	82				
mm mm m	PN63	EN 1092-1	63	63	61,5	59,6	56,8	52,7	50,3	49	42,5	-	PNI	60			160	152	148	140	136	132	I			
image image </td <td>PN100</td> <td></td> <td>100</td> <td>100</td> <td>97,7 90.6</td> <td>94,7 87.8</td> <td>90,1 83.6</td> <td>83,6 77.5</td> <td>79,8</td> <td>77,8</td> <td>67,5 69.1</td> <td>{</td> <td></td>	PN100		100	100	97,7 90.6	94,7 87.8	90,1 83.6	83,6 77.5	79,8	77,8	67,5 69.1	{														
image image </td <td>CL900</td> <td></td> <td>150,1</td> <td>139,2</td> <td>135,7</td> <td>131,4</td> <td>125,1</td> <td>116,1</td> <td>110,8</td> <td>109,5</td> <td>103,4</td> <td>1</td> <td></td>	CL900		150,1	139,2	135,7	131,4	125,1	116,1	110,8	109,5	103,4	1														
image: image:	PN160		159,2	147,6	143,9	139,4	132,7	123,1	117,5	116,1	109,7	1														
	PN250	DN EN 1750 1	241,4	223,5	217,8	211,2	201,1	186,6	178,1	175,8	166,2]														
	CL1500	FIN-EIN 1759-1	250,5	231,9	226	219,2	208,7	193,6	184,8	182,4	172,5	-														
image image <t< td=""><td>PN320</td><td></td><td>313</td><td>289,9</td><td>282,6</td><td>273,9</td><td>260,8</td><td>242</td><td>231</td><td>227,9</td><td>215,6</td><td>{</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PN320		313	289,9	282,6	273,9	260,8	242	231	227,9	215,6	{														
numenumenumenumenumenumenumenumenum <td>CI 2500</td> <td></td> <td>390,4 /17.2</td> <td>386.6</td> <td>376.0</td> <td>365.1</td> <td>347.7</td> <td>300,0</td> <td>292,0</td> <td>200,0</td> <td>273,1</td> <td>1</td> <td></td>	CI 2500		390,4 /17.2	386.6	376.0	365.1	347.7	300,0	292,0	200,0	273,1	1														
<th c<="" td=""><td>012300</td><td></td><td>417,2</td><td>500,0</td><td>570,5</td><td>303,1</td><td>547,7</td><td>522,1</td><td>500</td><td>303,0</td><td>207,5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>012300</td> <td></td> <td>417,2</td> <td>500,0</td> <td>570,5</td> <td>303,1</td> <td>547,7</td> <td>522,1</td> <td>500</td> <td>303,0</td> <td>207,5</td> <td></td>	012300		417,2	500,0	570,5	303,1	547,7	522,1	500	303,0	207,5														
here image image <th< td=""><td>Table 8.</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>Mate</td><td>erial: W</td><td>C9 as</td><td>per AST</td><td>M A217</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Table 8.		1						Mate	erial: W	C9 as	per AST	M A217													
Imam Imam </td <td></td> <td></td> <td>40 50</td> <td>100</td> <td>450</td> <td>000</td> <td>050</td> <td>000</td> <td>050</td> <td>075</td> <td>lemp</td> <td>erature [1</td> <td></td> <td>475</td> <td>500</td> <td>540</td> <td>500</td> <td>505</td> <td>500</td> <td>5.40</td> <td>550</td> <td></td> <td></td> <td></td> <td></td>			40 50	100	450	000	050	000	050	075	lemp	erature [1		475	500	540	500	505	500	5.40	550					
<th co<="" td=""><td>PN / CL</td><td>Standard</td><td>-1050</td><td>100</td><td>150</td><td>200</td><td>250</td><td>300</td><td>350</td><td>3/5</td><td>400</td><td>425</td><td>450</td><td>4/5</td><td>500</td><td>510</td><td>520</td><td>525</td><td>530</td><td>540</td><td>550</td><td></td><td></td><td></td><td></td></th>	<td>PN / CL</td> <td>Standard</td> <td>-1050</td> <td>100</td> <td>150</td> <td>200</td> <td>250</td> <td>300</td> <td>350</td> <td>3/5</td> <td>400</td> <td>425</td> <td>450</td> <td>4/5</td> <td>500</td> <td>510</td> <td>520</td> <td>525</td> <td>530</td> <td>540</td> <td>550</td> <td></td> <td></td> <td></td> <td></td>	PN / CL	Standard	-1050	100	150	200	250	300	350	3/5	400	425	450	4/5	500	510	520	525	530	540	550				
Image Image <t< td=""><td>DNI10</td><td></td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td>10</td><td></td><td>vable wor</td><td>king pres</td><td>sure [bai</td><td>70</td><td></td><td>6</td><td></td><td><u> </u></td><td>2.0</td><td>2.4</td><td>2.0</td><td></td><td></td><td></td><td></td></t<>	DNI10		10	10	10	10	10	10	10		vable wor	king pres	sure [bai	70		6		<u> </u>	2.0	2.4	2.0					
Image Image <	PN10	EN 1092-1	10	10	10	10	10	10	10	10	9,9	9,7	9,5	7,3	5,5	5	4,4		3,9	3,4	2,9					
Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image 	CI 150	PN-FN 1759-1	19.5	17.7	15.8	14	12.1	10.2	8.4	7.4	6.5	5.6	4.6	37	2.8	-		19	- 0,2	1.3	-4,7					
Image	PN25		25	25	25	25	25	25	25	25	24.8	24.4	23.9	18.3	14	12.6	11.2	-	9.8	8.5	7.4					
Res Piere Piere <t< td=""><td>PN40</td><td>EN 1092-1</td><td>40</td><td>40</td><td>40</td><td>40</td><td>40</td><td>40</td><td>40</td><td>40</td><td>39,7</td><td>39</td><td>38,3</td><td>29,2</td><td>22,3</td><td>20,2</td><td>18</td><td></td><td>15,7</td><td>13,6</td><td>12</td><td></td><td></td><td></td><td></td></t<>	PN40	EN 1092-1	40	40	40	40	40	40	40	40	39,7	39	38,3	29,2	22,3	20,2	18		15,7	13,6	12					
PH109 H 63 63 63 63 63 64 65 65 65 75 65 75 65 75 65 75 65 7	CL300	PN-EN 1759-1	51,7	51,5	50,3	48,7	46,3	42,9	40,4	38,9	36,5	35,2	33,7	31,7	27,7	-	- I	21,6	.	-	15,3					
Philo Philo <th< td=""><td>PN63</td><td></td><td>63</td><td>63</td><td>63</td><td>63</td><td>63</td><td>63</td><td>63</td><td>63</td><td>62,5</td><td>61,5</td><td>60,3</td><td>46</td><td>35,2</td><td>31,9</td><td>28,3</td><td></td><td>24,8</td><td>21,4</td><td>18,8</td><td></td><td></td><td></td><td></td></th<>	PN63		63	63	63	63	63	63	63	63	62,5	61,5	60,3	46	35,2	31,9	28,3		24,8	21,4	18,8					
Image	PN100	EN 1092-1	100	100	100	100	100	100	100	100	99,2	97,6	95,6	73,1	55,9	50,6	44,9	-	39,3	34	29,9					
Image	CL600		103,4	103,1	100,3	97,5	92,7	85,7	80,4	77,6	73,3	70,2	67,7	63,4	55,7	-	-	43,3	-	-	30,7					
PHR04 PHR14+ 163. 163. 174. 174. 175. <	CL900		155,1	154,6	150,6	146,2	139	128,6	120,7	116,5	109,8	105,4	101,4	95,1	83,4		•	64,9	·	•	46					
Photope Photope Paramete <	PN160		164,5	163,9	159,5	154,7	147,4	136,4	128	123,6	116,5	111,8	107,6	100,8	87,3	•	•	68,9	•	•	48,8					
C1 100 VICA C286 C27 C280 C24 C	PN250	PN-EN 1759-1	249,2	248,1	239,8	231,2	222,6	206,6	193,8	187	176,4	169,2	162,9	152,5	122,2	-	·	104,4	·		74,1					
PH30 PH40 PH40 <th< td=""><td>CL1500</td><td></td><td>258,6</td><td>257,7</td><td>250,8</td><td>244</td><td>231,8</td><td>214,4</td><td>201,1</td><td>194,1</td><td>183,1</td><td>175,6</td><td>169,1</td><td>158,2</td><td>138,9</td><td>-</td><td> ·</td><td>108,4</td><td> .</td><td>-</td><td>76,9</td><td></td><td></td><td></td><td></td></th<>	CL1500		258,6	257,7	250,8	244	231,8	214,4	201,1	194,1	183,1	175,6	169,1	158,2	138,9	-	·	108,4	.	-	76,9					
Price 409, 409, 409, 409, 409, 400, 360, 400, 360, 400, 300, 400, 200, 200, 200, 200, 200, 200, 2	PN320		323,2	321,9	312,3	302,3	289,2	268	251,4	242,5	228,8	219,4	211,4	197,8	165,7	-	-	135,4	-	•	96					
CL 200 4 40.9 4 40.9 4 40.9 4 40.9 4 40.9 3 60.2 3 3 2.0 3 2.0 2 6.0 2 6.0 2 7.0 1 0 100.0 1 10.0 10.0 10.0 10.0 10.0 3 60.2 3 7.0 3 2.0 2 6.0 2 6.0 2 7.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 2 0.0 2 50 3 7.0 3 7.0 2 7.0 2 7.0 5 7.0 5 7.0 5 7.0 5 7.0 6 7.0 5 7.0 5 7.0 5 7.0 5 7.0 6 7.0 5 7.0 <	PN400		409,4	408	397,1	385,7	366,8	339,4	318,5	307,1	289,7	277,9	267,7	250,7	218,5	-	-	1/1,5	-	-	121,5					
Table 9. Material: Gram Standard Standard <t< td=""><td>6L2300</td><td></td><td>430,9</td><td>429,0</td><td>410,3</td><td>406,5</td><td>300,2</td><td>357,2</td><td>330,3</td><td>323,2</td><td>304,9</td><td>292,5</td><td>201,0</td><td>203,9</td><td>231,7</td><td>-</td><td>-</td><td>160,5</td><td>-</td><td>-</td><td>127,9</td><td></td><td></td><td></td><td></td></t<>	6L2300		430,9	429,0	410,3	406,5	300,2	357,2	330,3	323,2	304,9	292,5	201,0	203,9	231,7	-	-	160,5	-	-	127,9					
Prival Image: Prival Prival Prival Image: Prival Priva	Table 9.									M	laterial:	CF8M	as per l	ASTM A	351											
PN / CL Standard -100 100 150 200 250 300 400 425 430 475 500 510 520 520 <													Tem	oerature	[°C]				r							
Image: problem Prior Respective Respecti	PN/CL	Standard	-1050	100	150	200	250	300	350	375	400	425	450	475	500	510	520	525	530	540	550	575	600	625	649	
PN10 EN 10921 R8 7,8 7,8 6,6 6,												Allo	wable wo	rking pre	issure (ba	r]					1					
NN NN<	PN10	EN 1092-1	8,9	7,8	7,1	6,6	6,1	5,8	5,6	5,5	5,4 9.7	5,4	5,3	5,3	5,2	5,2	5,2	-	5,2	5,1	5,1	4,7	3,8	-	-	
No.1 No.1 <th< td=""><td>CI 150</td><td>PN-FN 1759-1</td><td>14,5</td><td>12,5</td><td>14.8</td><td>13.6</td><td>12</td><td>9,3 10.2</td><td>8.4</td><td>7.4</td><td>6.5</td><td>5.6</td><td>4.6</td><td>3.7</td><td>2.8</td><td></td><td>- 0,3</td><td>19</td><td>- 0,5</td><td>14</td><td>0,2</td><td></td><td>- 0,1</td><td>-</td><td></td></th<>	CI 150	PN-FN 1759-1	14,5	12,5	14.8	13.6	12	9,3 10.2	8.4	7.4	6.5	5.6	4.6	3.7	2.8		- 0,3	19	- 0,5	14	0,2		- 0,1	-		
EN 1092-1 S5.6 31.3 28.5 26.4 24.7 23.4 22.6 21.1 21.8 21.6 21.4 21.2	PN25		22,3	19,5	17,8	16,5	15,5	14,6	14,1	13,8	13,6	13,5	13,4	13,3	13,2	13,1	13,1	-	13	13	12,9	12	9,6	-	-	
CL300 PN-EN 1759-1 48,1 42,3 38,6 35,8 33,5 31,6 30,4 29,6 29,3 29 29,7 27,3 7.0 7.0 25,2 7.0 7.0 24,8 29,9 19,9 15,7 12,8 PN63 EN 1092-1 56,1 49,2 44,9 41,0 38,9 36,9 35,5 34,9 34,4 34 33,7 33,5 33,2 33 32,9 7.0 52,1 51,0 51,7 47,9 38,7 7.0 PN100 PN100 PN100 P0,3 R4,5 77,1 71,2 66,7 63,1 61,0 58,5 56,4 53,4 53,1 52,6 52,4 52,1 51,0 51,7 47,9 38,7 38,7 33,5 33,2 33,2 33,2 32,8 32,7 52,1 51,1 51,7 47,9 38,7 53,7 57,3 54,8 7.0 52,1 51,7 51,8 51,7 47,8 5	PN40	EN 1092-1	35,6	31,3	28,5	26,4	24,7	23,4	22,6	22,1	21,8	21,6	21,4	21,2	21	21	20,9		20,8	20,8	20,7	19,1	15,5	-		
PN63 PR 1092-1 56.1 49.2 44.9 44.6 38.9 36.9 34.9 34.4 34.7 33.2 33.3 32.9 5.0 32.8 32.7 32.6 32.0 24.4 34.7 34.7 PN100 78.1 78.1 71.3 66 61.8 58.5 54.6 55.3 54.5 54.7 57.3 52.6 52.4 52.7 51.9 51.7 47.9 38.7 37.7 57.3 54.8 52.6 52.1 51.9 51.7 47.9 38.7 38.7 52.6 52.4 52.7 52.7 51.7 <th< td=""><td>CL300</td><td>PN-EN 1759-1</td><td>48,1</td><td>42,3</td><td>38,6</td><td>35,8</td><td>33,5</td><td>31,6</td><td>30,4</td><td>29,6</td><td>29,3</td><td>29</td><td>29</td><td>28,7</td><td>27,3</td><td>-</td><td>-</td><td>25,2</td><td>-</td><td>-</td><td>24</td><td>22,9</td><td>19,9</td><td>15,7</td><td>12,8</td></th<>	CL300	PN-EN 1759-1	48,1	42,3	38,6	35,8	33,5	31,6	30,4	29,6	29,3	29	29	28,7	27,3	-	-	25,2	-	-	24	22,9	19,9	15,7	12,8	
PN100 98.0 78.1 <t< td=""><td>PN63</td><td>EN 1092-1</td><td>56,1</td><td>49,2</td><td>44,9</td><td>41,6</td><td>38,9</td><td>36,9</td><td>35,5</td><td>34,9</td><td>34,4</td><td>34</td><td>33,7</td><td>33,5</td><td>33,2</td><td>33</td><td>32,9</td><td>-</td><td>32,8</td><td>32,7</td><td>32,6</td><td>30,2</td><td>24,4</td><td>-</td><td>•</td></t<>	PN63	EN 1092-1	56,1	49,2	44,9	41,6	38,9	36,9	35,5	34,9	34,4	34	33,7	33,5	33,2	33	32,9	-	32,8	32,7	32,6	30,2	24,4	-	•	
CLG00 PN-EN 96.3 84.5 77.1 71.2 66.7 63.1 61 59.8 58.9 57.7 57.3 57.8 57.8 57.6 57.6 57.	PN100	IOOE 1	89,1	78,1	71,3	66	61,8	58,5	56,4	55,3	54,5	54	53,4	53,1	52,6	52,4	52,2	-	52,1	51,9	51,7	47,9	38,7	-	Ŀ	
CL9UU 144.4 126.8 115.6 107 100.2 95 91.3 89.7 88.2 87.3 86.6 86 82.1 - - 75.9 - 71.8 68.3 59.7 47.5 38.3 PN160 153.1 134.4 122.6 113.5 106.3 100.7 96.8 95.1 93.6 92.6 91.8 91.2 87.1 - - 75.9 - - 75.8 59.7 <	CL600		96,3	84,5	77,1	71,2	66,7	63,1	61	59,8	58,9	58,3	57,7	57,3	54,8	-	-	50,6	-	•	47,8	45,5	39,8	31,7	25,5	
PNIDU PNATO PAGA <	CL900		144,4	126,8	115,6	107	100,2	95	91,3	89,7	88,2	87,3	86,6	86	82,1	-	-	75,9	-	·	71,8	68,3	59,7	47,5	38,3	
NLCC PN-EN17591 Call Cold	PN160 PN250		153,1 231 Q	203.3	122,6	113,5 171.0	106,3	100,7	96,8 146.7	95,1 143 Q	93,6 141 7	92,6 140 3	91,8 139.1	91,2 138.1	87,1 131.7	-	-	δU,5 121.8	-	·	115.4	/2,5 109.8	03,3 95.9	50,4 76.3	40,3 61	
PN320 300.8 263.7 240.6 223 208.7 197.6 190.3 186.7 184. 182.1 180.3 179.2 170.9 - - 158 - 149.7 142.5 124.4 98.9 79.2 PN400 381 334.1 304.8 282.4 264.2 250.3 241.1 236.5 233.1 230.7 228.4 227 216.6 - - 149.5 180.5 157.7 125.1 100.4 CL2500 401 351.7 320.8 297.2 278.1 263.5 253.8 249 244.5 242.9 240.4 238.9 228 - - 149.5 180.5 157.7 125.1 100.4	CL1500	PN-EN 1759-1	240.6	210.9	192.4	178.4	167	158.1	152.2	149.3	147.1	145.6	144.3	143.3	136.7	-	-	126.4	-	.	119.8	114	99.5	79,2	63,8	
PN400 381 334,1 304,8 282,4 264,2 250,3 241,1 236,5 233,1 230,7 228,4 227 216,6 - - 200,2 - - 189,5 180,7 125,1 100,4 CL2500 401 351,7 302,8 292,2 278,1 263,2 253,8 249 240,4 238,9 228 - - 199,5 180,5 157,7 125,1 100,4	PN320		300,8	263,7	240,6	223	208,7	197,6	190,3	186,7	184	182,1	180,3	179,2	170,9	-	-	158	-		149,7	142,5	124,4	98,9	79,2	
CL2500 401 351.7 320.8 297.2 278.1 263.5 253.8 249 245.4 242.9 240.4 238.9 228 210.7 - 199.5 190 166 131.7 106.5	PN400		381	334,1	304,8	282,4	264,2	250,3	241,1	236,5	233,1	230,7	228,4	227	216,6	-	-	200,2	-	-	189,5	180,5	157,7	125,1	100,4	
	CL2500		401	351,7	320,8	297,2	278,1	263,5	253,8	249	245,4	242,9	240,4	238,9	228	-	-	210,7	-		199,5	190	166	131,7	106,5	

DESIGN

Single-ported globe control valves Z1B are recommended for application under heavy-duty working conditions, with excessive noise, flashing or choked flow. Selection of designs and materials depends on working conditions. It is based on computer-aided calculations of flow coefficients, noise level, fluid status, and effectiveness of such actions depends on data submitted by customer. Application of perforated control elements allows noise reduction by 10dBA regarding execution with contoured plug. Further noise reduction (by 5 dBA) can be achieved by application of choke cage, which causes reduction in pressure drop between plug and seat. Such design is also recommended in case of choked flow, cavitation and flashing. Perforated structures feature higher pressure recovery coefficient FL, which allows achievement of higher flow at same Kv_s and Δp as in basic design. Customers shall also appreciate possibility of achieving maximum flow ratio for all nominal sizes and control characteristics, and reduction in actuator costs due to application of balanced plugs. In case of compressive media it is advisable to apply diffusers at the valve outlet. In justified cases (noise, choked flow) diffusers can be fitted with additional perforated choke structures in the form of plates assembled between flanges or welded in diffuser interior. On customer's request, also when flow conditions justify such solution, special executions are recommended concerning materials, flow ratios, control characteristics, leakage class, etc.

Table 9. Packing types with application ranges.

			Temperature [°C]			
Packing	PN		Bonnet			
		Standard	Extension	Bellow seal		
PTFE-V			109 46			
PTFE + Graphite	up to CL600)*	-46+200	-19040	-100+200		
PTFE-V / TA-LUFT			+200+300			
Graphite	up to CL 2500.)*	.200 .200	.200 .527 (.650)**	.200		
Graphite / TA-LUFT	up to 622500)	+200+300	+300+337 ,(+030)	+200+400		

)* PN10...40; CL150...3000 for below seal bonnet

)** for welding ends valves

Table 11: Flow ratios Kv_s.

Kvs	S	Stroke	Seat diameter	F	D				Vominal	size DN				
			D	IV kl.	V kl.	1								
L	Р	[mm]	[mm]	[k	:N]	25	40	50	80	100	150	200	250	300
10)		20,64	0,33	2,1	• K1**)	K2	K2						sp
16	i	20	25,25	0,4	2,6		K1	K2						eci
25	,		31,72	0,5	3,3		• K1	K1	K2					
40)		41,25	0,7	4,6			• K1	K2	K2				t že
63		38	50,8	0,8	5,2				K1	K2	K2			o uti
94		1	66,7	1,1	7,2				• K0	K1	K2	K2		div ,
125	5	50	00.0	4.4	0.1					K1	K2	K2	K2	idu;
160	0	50	88,9	1,4	9,1					• K1	K2	K2	K2	al ir
200	D	<u></u>	107.00	17	44						K1	K2	K2	nqu
250	0	03	107,92	1,7							K1	K2	K2	irie
320	0	80	126,95	2,0	13						K1	K2	K2	s a
500	0		158,72	2,5	16							K1	K2	
630	D	100	202.0	2.0	01								K1	Indi
800	-		203,2	3,2	21								K1	ng
					Calculation	o coefficie	nts							
				F _L =	0,95 ; X ₇ =0,7	8; Fd=0,1	; xFz=0,	75						

NOTE

1. - no executions for PN250...CL2500

2. **) - for PN10...CL300 - K0

K0 - no choke cages,

K1 - one choke cage,

K2 - two choke cages.

3. "K" - maximum number of choke cages in valve. 4. The number of choked cages does not concern the balanced valves by a pilot.

ALLOWABLE PRESSURE DROPS *Ap.*

Pressure drops Δp [bar] in Table 13 apply to closed valve and they are calculated with regard to the valve drive performance. Actual pressure drops should not exceed 70% of allowable working pressure for given nominal pressure, used material and working temperature, as per tables 3...9.

 $\Delta p = \frac{Fs - F_{D}}{0.785 \cdot 10^{-4} \cdot D^{2}} \quad \text{or} \quad Fs = 0,785 \cdot 10^{-4} \cdot D^{2} \cdot \Delta p + F_{D}$

where

Fs [kN] F_D[kN] D [mm]

 Δ p [bar]

 calculated pressure drop
 actuator available force (Table 12) - valve plug to valve seat pressure (Table 11) - valve seat diameter (Table 11)

NOTE

1. Valves with balanced plug and with gasket are manufactured only in leakage class IV. For balanced plugs assume the available force of F_s at least equal to F_D for class V (Table 11).

2. For valves relieved with a remote control, drive disposition forces need to be agreed on with the manufacturer.

Table 12: Available force F. [kN] of pneumatic actuators

	Dir	ect actuator P :	P1			Reverse act	uator R : R1		
Actuator	Sup	ply pressure [k	Pa]			Spring ra	nge [kPa]		
size	140	250	400	20 - 100	40 - 120; 40 - 200	60 - 140	80 - 240	120 - 280	180 - 380
160	0,64	2,4	4,8	0,32	0,64	0,96	1,28	1,92	-
250	1,0	3,8	7,5	0,5	1,0	1,5	2,0	3,0	-
400	1,6	6,0	12,0	0,8	1,6	2,4	3,2	4,8	-
630	2,5	9,5	18,9	1,3	2,5	3,8	5,0	7,6	11,3
R-630T	-	-	-	2,6	5,0	7,6	10,0	15,2	22,6
1000	4,0	15,0	30,0	2,0	4,0	6,0	8,0	12,0	18,0
1500	6,0	22,5	45,0	3,0	6,0	9,0	12,0	18,0	27,0
1500T	12,0	45,0	90,0	6,0	12,0	18,0	24,0	36,0	54,0

NOTE:

1. For direct actuators P; P1 adopted spring range is 20 – 100 kPa

2. For electric and other actuators Δp value can be calculated using above formula and data from Table 11, taking nominal load capacity as available force FS, as per actuator data sheet.

Table 13: Pressure drops Δp [bar] for valves with pneumatic actuators, leakage class class IV and V

				Air-to	-close								A : + -						
<u>_</u>			Spring	range	201	00 kPa							AIr-to	-open					
nete	e.		V class	2		V class				IV c	1200					V c	200		
]]	siz		Cup			V Glass				nring ro	ngo [kDr	1			c	nring ra	ngo [kDr	1	
atc	ator		Jup	Jiy pies		кгај			1	pring ra	lige [kFa	1]			3	pring ra	IIYE [KFa	1]	
_ se	ctua							00	00 50	40	40	280	880	8	20 00	40	40	280	380
alve	A	140	250	400	140	250	400			-	5				1.2	-	2		
2								20	40	60	80	120	180	20	40	60	80	120	180
				l					I		l An [bar]								<u> </u>
	160	۵	62	122	_	7	70	_	٥	10	<u>2</u> p [bai]	17	_	_		-	-	-	
	250	20	100	210	-	48	159	5	20	34	49	78	-	-	-	-	-	26	-
20.64	400	37	166	280	-	115	280	14	37	60	84	131	-	-	-	9	32	79	-
20,01	630	65	272	280	11	218	280	27	65	103	140	216	280	-	11	49	86	162	274
	R-630T	-	-	-	-	-	-	65	140	216	280	280	280	11	86	162	237	280	280
	160	4	40	87	-	-	43	-	4	11	17	30	-	-	-	-	-	-	-
	250	12	67	142	-	23	98	2	12	22	32	52	-	-	-	-	-	8	-
25,25	400	24	112	232	-	68	188	8	24	40	56	88	-	-	-	-	12	44	-
	630	42	180	280	-	136	280	17	42	67	92	143	218	-	-	23	48	98	174
	R-630T	-	-	-	-	-	-	42	92	143	193	280	280	-	48	98	149	249	280
	160	1,5	24	54	-	-	19	-	1	5	9	17	-	-	-	-	-	-	-
	250	6	41	88	-	5	53	-	6	12	19	31	-	-	-	-	-	-	-
31,72	400	14	70	145	-	34	110	4	14	24	34	54	-	-	-	-	-	19	-
	630	25	113	232	-	78	197	10	25	41	57	90	137	-	-	6	21	54	101
	R-630T	-	-	-	-	-	-	25	57	89	121	185	280	-	22	54	85	149	245
41 25	630	13	63	130	-	35	102	4	13	22	31	49	75	-	-	-	3	21	48
	R-630T	-	-	-	-	-	-	14	32	51	70	108	164	-	5	24	43	81	137
	630	9	43	90	-	21	69	2,5	9	15	21	34	53	-	-	-	-	12	30
50,8	1000	16	71	146	-	49	124	6	16	26	36	56	86	-	-	4	14	34	64
	1500	25	107	218	3	85	196	10	25	40	55	84	129	-	3	18	33	62	107
007	630	4	24	50	-	6	33	-	4	8	11	18	29	-	-	-	-	-	11
66,7	1000	8	40	83	-	22	100	3	8	14	20	31	48	-	-	-	2	14	30
	1000	14	01	120	-	44	108	0 1	14	23	31	48	74	-	-	5	14	30	00
88,9	1500	4	22	40	-	21	54	2	4	10	17	17 07	<u> </u>	-	-	-	-	0 14	20
	1000	/ 2	34	20	-	<u> </u>	20	3	2	5	7	<u> 21</u> 11	41	-	-	-	5	14	29
107 02	1500	5	22	17	-	4	20	- 1	5	9 0	11	10	28	-	-	-	- 1	Q	17
107,32	1500T	11	48	96	1	37	86	5	11	18	24	37	57	-	1	8	14	27	47
	1500	3	16	34	-	8	25	-	3	6	8	13	20	-	-	-	-	4	11
126,95	1500T	8	34	70	-	25	61	3	8	13	17	27	41	-	-	4	9	18	33
L	1500	2	10	21	-	3	14	-	2	3	5	8	12	-	-	-	-	1	6
158,72	1500T	5	21	44	-	14	37	2	5	8	10	17	26	-	-	1	4	10	19
	1500	-	6	13	-	-	7	-	-	2	3	4.5	7	-	-	-	-	-	2
203,2	1500T	3	13	27	-	7	21	-	3	4,5	6	10	16	-	-	-	-	5	10

NOTE:

1. In Table 13, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%. Pressure drops chosen that way guarantee internal tightness of closing of the valves.

2.In valves working along the procedure: "increased control pressure – valve opens", the actuator with springs ranged 40-120 kPa can be replaced with an actuator ranged 40-200 kPa, with the same pressure drops.
3. For reverse-working actuators (type R or R1), supply pressure should be higher than the upper spring range by at least 40kPa.

NOISE REDUCTION:

Should noise due to cavitation or aerodynamic phenomena exceed level acceptable by customer, it can be reduced by applying the following solutions:

- perforated valve plugs (Fig. 1a, 1b and 1d)
- silencer plates on valve outlet and/or inside of reduction joint (Fig. 3,4 and Table 13)
- reduction ends (diffusers) (Fig. 4)

Table 14: Dimensions and flow ratios for silencer plates

			,			,			,	
DN	25	40	50	80	100	150	200	250	300	350
	10	25	40	94	160	320	500	800	1000	1500
Kuo	9	22,5	36	84	144	288	450	720	900	1350
I NVS	8	20	32	75	128	256	400	640	800	1200
	7	17,5	28	66	112	224	350	560	700	1050
L [mm]	5	6	6	1	0	1	5		20	
Dp [mm]	68	88	102	138	162	218	285	345	410	465

Multi-plate silencer kits are customized for requirements of individual processes.

DIMENSIONS AND WEIGHTS

	DN	21	10		250	
Pľ	V/CL	PN10CL300	PN63CL600	PN10CL300	PN10CL300 (kv800)	PN63CL600
В	max	190	235	25	58	255
	DS	43	9		458	
С	DW	53	9		558	
	DM	580	-	580	660	-
W [eight kg]	195	220	320	330	360

DN300 - special execution, technical data according to individual inquiries. (table: 15a and 15b).

NOTE: Weight of valve with standard bonnet and without actuator.

Table 1	5b: Co	ntrol v	alves	connec	tion dir	nensior	ns									
DN	2550	50	80	80; 100	80; 100	100		15	50		200		200; 2	250		250
Kvs	1025	40	25	40	63; 94	125; 160	63; 94	125; 160	200; 250	320	94	125; 160	200; 250	320	500	630; 800
Stroke	20	38	20	38	38	50	38	50	63	80	38	50	63	80	1	00
d ₁		M12	(1,25	25 M				16x1,5 M20x1,5				x1,5	M20x	1,5	M24	lx1,5
d ₂ 1)		5	7,15 / 2	1/4"-16U	N2A		84,15 / 3 5/16"-16NS2A					95	,25 / 3 3/4	"-12UN	2A	
d ₃	1	2			16			2	0				24			
Actuator	160 250 400 630 R-630T	160 160 630 160 250 630 250 630 100 400 R-630T 400 R-630T 1000 150 630T R-630T R-630T 1500 150			1000 1500	630 1000 1500	1000 1500	1000 1500 1500T	1500 1500T	10) 15()0)0	1000 1500 1500T		1500 1500T		

NOTE:

1) For DN80 and DN100 valves with TA-LUFT packing $\rm d_{_2}$ = 84.15

Table 16. Control valve length, flanges.

					Dim	esion A [mm	1]						
DN			PN / DIN					C	L				
	10; 16; 25; 40	63 - 100	160	250 - 320	400	CL150	CL300	CL600	CL900	CL1500	CL2500		
25	160	230	230	260	300	184	197	210	248	273	308		
40	200	260	260	300	350	222	235	251	270	311	359		
50	230	30 300 300 350 400 254 267 286 311 340 400											
80	310	380	380	450	500	298	317	336	387	460	498		
100	350	430	430	520	580	352	368	394	464	530	575		
150	480	550	550	*	*	451	473	508	556	*	*		
200	600	650	*	*	*	543	568	610	*	*	*		
250	730	730 775 * * * 673 708 752 * * *											
300	300 special execution, technical data according to individual inquiries												
		* hiah	er nominal	pressures a	available af	ter agreem	ent with the	manufactu	rer				

Note: Dimension A presented in Table 15 for CL150; CL300; CL600; CL900; CL1500; CL2500 apply to bodies with B seat (RF). For other executions dimension A₁ can be calculated using relations presented in Table 17.

Table 17. Algorithms for calculation of control valve body length for valves with flanged end

- with groove
- with races
- with ring-joint

Body type and identification	Brocouro Cl	DN	٥
PN / ANSI	Flessule CL	אום	A 1
With groove	CL300		A ₁ = A + 5 x 2
DL / (GF) With races F / (FF)	CL900 CL900 CL1500 CL2500	25250	A ₁ = A - 1,5 x 2
	CL150	25250	A . = A +6 5 x 2
	CL300	2540	
	CL300	50250	A ₁ = A + 8 × 2
With ring is int	CL600 CL900 CL1500	2540	A ₁ = A
J / (RTJ)	CL2500	25	
	CL600	50250	
	CL900 CL1500	50100	A ₁ = A + 1,5 x 2
	CL900	150	
	CI 2500	80	$A_{1} = A + 3 \times 2$
	022000	100	A ₁ = A + 4,5 x 2

					Ī										Dime	nsion	A [mn	1]						
		DN			ŀ				NI 10	01/	200					inai pi		e			DNOEC		-00	
		05			\dashv			P		UL	500				ULS	100	11160				PNZOU	00L20	000	
		25			-				2	10						230						300		
		40			\rightarrow					102						200						300 400		
		00			\rightarrow					200						200						500		
		100			-					201						120						580		
		150			\rightarrow				5	094 08						550						*		
		200							F	10						*						*		
		250			\dashv				7	752						*						*		
		300								s	pecia	l exe	ecutio	n. teo	chnical	data a	accord	dina to	individ	lual ind	uiries			
				*	hiq	her	non	nina	l pre	ssur	es a	vaila	ble a	after a	greeme	nt wit	h the	manuf	acture	r	1			
															0									
abl	e 19: E	Butt w	elding	en	ds	BV	V.																	
ПΝ	Dz	t	Dw			·		PN (DIN32	39)				DN	Schedule	Dz	t	Dw		. /	ANSI (ASI	ME 36.10	M)	
DN	[mm]	[mm]	[mm]	10	16	25	40	63	100	160	250	320	400		Ochiculic	[mm]	[mm]	[mm]	CL150	CL300	CL600	CL900	CL1500	CL2
		2,6	28,5	X	х	Х	Х	х	Х						40		3,4	26,6	х	x	х	x		
	00.7	2,9	27,9							Х				1"	80	33.4	4,5	24,4					х	
25	33,1	5	20,5									Y			160	,	6,4	20,6 •						<u> </u>
			19,5 •									~	x		XXS		9,1	15,2 •						
	42,4	7,1	28,2										х		40		3,7	40,9 •	Х	X	X	X		┢
		2,6	43,1	х	х	х	х							1 1/2"	80	48,3	5,1	38,1 •	X	X	X	X	X	
		2,9	42,5					x	х						160		/,1	34,1					×	┢
40	48,3	3,6	41,1							Х					40		10,2	27,9 •						-
		5	38,3								Х				40		3,9	52,5 40.2 •	X	X	X	X		-
		6,3 10	35,7 28,3									X	Y	2"	160	60,3	8.7	49,3					x	+
		2.9	54.5	x	x	x	x	x					^		XXS		11 1	381						-
		3,2	53,9						х						40		5.5	77.9 •	x	x	x			┢
50	60.2	4	52,3							х					80		7.6	73.7 •	~	-		x		\vdash
50	60,3	6,3	47,7								х			3"	160	88,9	11,1	66,7					x	┢
		8	44,3									х			XXS		15,2	58,5						
		12,5	35,3	<u> </u>									х		40		6	102,3	х	x	х			\square
		3,2	82,5	X	х	X	Х								80		8,6	97,1 •				х		\square
		3,0	80.9					<u> </u>	Y					4"	120	114,3	11,1	92,1 •					х	
	88,9	6,3	76,3						~	х					160		13,5	87,3 •					х	
80		11	66,9								х				XXS		17,1	80,1 •						
		12,5	63,9									х			40		7,1	154,1 •	х	х				
		17.5	53,9 •										х	6"	80	168.3	11	146,3 •			х	х		
	114,3	,0	79,3										х		120	100,0	14,3	139,7 •				x		
		3,6	107,1	X	х	X	Х								160		18,3	131,7 •				х		
		4	106,3					X	Y						20		6,4	206,3	х	x				<u> </u>
	114.3	8	98.3						^	х					30		7	205,1		x				
100	7-	14,2	85,9								х			8"	40	219,1	8,2	202,7		X				-
		16	82,3									Х			60		10,3	198,5 •			X			-
		22,2	69,9 •										х		80		12,7	193,7 •			X			-
	139,7	20	99,7	<u> </u>									х		20		0,4	200,2	X	X				-
		4,5	159,3	×	х	X	X	L.						10"	40	272	1,0	251,4		×				+
150	168,3	0,0 7 1	15/,1 •	-				×	Y				\vdash	10	60	213	12 7	247 6 •		^	x			+
		1,1	143.3 •					\vdash	^	x					80		15.1	242.8 •			x			\vdash
	193,7	12,5	168,7							х				12"	spe	cial exe	ecutio	n, techn	ical dat	a accoi	rding to	individ	ual ingu	uirie
		5,9	207,3	x	х										1			,						
	219 1	6,3	206,5			х	х																	
200	-10,1	7,1	204,9					x						whe	ere:									
	044.5	10	199,1 •						X					$D_{z}[$	mm]		- K	oipe e	xtern	al dia	amete	er,		
_	244,5	12,5	219,5		~				Х					D _w [mm]		- k	oipe ir	nterna	al dia	mete	r,		
		7,1	258.8	L ×	×	x	x	\vdash						t [m	m]		- K	oipe w	/all th	ickne	ess.			
250	273	8,8	255,4			Ê		x																
		12,5	248						х					NO	TE:									
					_		_	-	-															

It is allowed to execute connections for other dimensions of pipes. Should pipe dimensions fall within the range $\emptyset B \min / \emptyset A \max$ (Fig. 6, Table 20), connection can be executed as cast. Otherwise reduction stub is to be welded to body end, which shall result in extension of the housing by L or 2L size (Fig. 7, Table 20). Other connection dimensions are allowed upon consulting with manufacturer.

Table 20: Dimensions of non-processed butt welding ends (executed as cast) and lengths of reduction stubs.

DN	Pressure	A max	B min	L
	PN 1040, CL 150, 300	38	20	
25	PN 63100, CL 600	48	20	
	PN 160, CL 900	40	23	
	PN 250400, CL 1500,2500	48	23	
	PN 1040, CL 150, 300	64	42	
1 10	PN 63100, CL 600	75	42	50
40	PN 160, CL 900	66	38	
	PN 250400, CL 1500,2500	66	28	
	PN 10100, CL 150600	80	55	
50	PN 160, CL 900	80	50	
	PN 250400, CL 1500,2500	92	42	
	PN 1040, CL 150, 300	110	82	
00	PN 63100, CL 600	122	82	
00	PN 160, CL 900	111	76	
	PN 250400, CL 1500,2500	127	56	75
	PN 10100, CL 150600	144	102	
100	PN 160, CL 900	144	102	
	PN 250400, CL 1500,2500	165	81	
	PN 1040, CL 150, 300	183	160	
150	PN 63100, CL 600	196	160	100
	PN 160, CL 900	217	154	
200	PN 1040, CL 150, 300	243	200	
200	PN 63100, CL 600	248	200	150
250	PN 1040, CL 150, 300	291	248	100
200	PN 63 100 CL 600	346	248	

Fig. 6. Dimension of butt welding ends executed as cast

Table 21: SW s	ocket v	velding er	nds.					
	DN			D ₂			K	
	25 40			<u> </u>			13	
	50			61			16	
VALVE ACTUA Pneumatic:	TOR:	- diaph P1/R1 P1B/R ² P/R PN/RN	ragm multi-spr - cas IB - cas - colu - colu	ing actuator as p t yoke, no handv t yoke, side-mou umn type, no har	per Table 21: vheel inted ndwheel	مما		
<u>NOTE:</u>	P R	- direct	action; air-to-o se action; air-to	close o-open				
Table 22: Pheu	matic a	Ctuators.	Diaphrage	n offostivo area [om²]	Stroka [m	ml	Boyo	lutions par stroke
Туре		512e 160	Diapriragr	160			Kevo	Diutions per stroke
P/R ; PN/RN		250		250	20			5
		400		400				
P1/R1; P/R	; RN	630 D 6207	*)	630	20 ; 38			5;9
	אח	1000	,	2 X 630	38 · 50 ·	63		8 · 10 · 13
	4 D	1500		1500	00.50.00	20. 100		10 : 10 : 10: 00
P1/R1 ; P1B/R	18	1500T		2 x 1500	38;50;63;8	30; 100	8;	10 ; 13 ; 16; 20
			*) - there are	no top mounted handv	veel for R-630T			
Table 23: Sizes	and w	eights of p	oneumatic acti	uators P/R and F	PN/RN - Fig. 8.			
A - tu - t		D,	D ₂	H,	H,		Weigl	ht [kg]
Actuator size			^	nm	۷	P/	′R	PN/RN
160	2	210		306	468	9)	13,5
250	2	240	225	324	486	1	0	14,5
400		305	0.05	332	494	1	6	20,5
630 B-630T		375	305	424	586	3	0 5	37
1000	4	477	450	607	847	7	<u> </u>	100
1500		50	-	704	-	9	5	-
1500T		000	-	1008	-	20	00	-
			H					
ц ц	Ψ.	Ψ	Fig. 8	. Actuators P/R,	PN/RN		Ψ	

Table 24: Sizes and weights of pneumatic actuators P1/R1 and P1B/R1B - Fig. 9

Actuator size	В	D ₁	D ₂	Н	Weigh	nt [kg]
Actuator Size		m	m		P1/R1	P1B/R1B
400	255	305	225	453	20	28
630	280	375	305	548	40	50
1000	340	477		773	85	105
1500	410	550	450	833	120	150
3000	410	550		1138	225	255

Table 25: Manual drive	s type 20 - ty	pes, sizes and	weights.					
Туре	Stroke [mm]	d ₁	d ₂	Н	D	rev/stroke	Weight [kg]	
20-20-57-M12	20		57,15		000	0	7.5	
20-20-84-M12	20	M12x1,25	84,15]	220	0	7,5	
20-38-57-M12			57 15	065				
20-38-57-M16	20		57,15	200	200	15	10	
20-38-84-M16	30		84,15		290	15		
20-38-95-M16		MIGV1 F	95,25				<u> </u>	
20-50-57-M16		1111021,3	57,15				1	
20-50-84-M16	50		84,15			16		
20-50-95-M16			95,25	385	457		16	
20-63-84-M20	62		84,15]		20		
20-63-95-M20	03		95,25			20		
20-80-84-M20	00	IVIZUXI,3	84,15					
20-80-95-M20	80		05.25	533	610	19	24	
20-100-95-M24	100	M24x1,5	90,20					

Marking:

Example: 20-38-57-M16 - manual drive type 20; stroke - 38mm; d₂=57,15mm; d₁=M16x1,5

SPECIAL OPTIONS:

- oxygen and hydrogen option:

Application of adequate materials, mechanical and chemical cleaning, inspections and assembly ensure compatibility with oxygen and hydrogen flows.

- low temperature media option:

Application of adequate materials and special bonnet design ensures effective isolation of valve drive from the impact of low temperatures. Used mostly for liquid oxygen and liquid nitrogen.

- acid gas option:

Parts of the valve can be made of materials and under conditions ensuring valve operation with gases of H_2S content as per NACE MR-0175.

- heat jacket option:

Design and technical parameters as per customer's specification.

- balanced valves with pilot:

Construction allows achievement of high leakage class at high pressure drops and reduced available force of actuator, flow direction - above the plug.

- valves with non-cast bodies:

If a special construction of the valve body is needed, it is possible to design a valve for individual customer's needs (angle valves – type L and Z).

MARKING EXAMPLE:

Control valve type Z1B with pneumatic actuator of reverse type, complete with top-mounted handwheel, extension bonnet, packing: expanded graphite, leakage class cl.VI, with throttling cage, balanced equal-percentage plug, body material: stainless steel.

RN-Z1B-2E481P5

Marking is shown on valve nameplate.

Additionaly, it shows:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- plug stroke fluid group [1 or 2],
- serial number and year of manufacture.

ORDERING:

In case of valves with choke cages please specify flow coefficients for the cage or other information that is necessary to calculate that parameter in accordance with the technical data questionnaire. Contact our staff from the Marketing and Sales Department as well as the Technical and Development Department for assistance to select the most suitable valves.

NOTES:

SINGLE-PORTED GLOBE CONTROL VALVES **TYPE Z1B**[®] Design solutions for special applications

INTRODUCTION:

Product versions of valves type Z1B include numerous special executions adjusted especially for particular requirements of installations, in which they are to be installed.

The flow of fluid through the valve (depending on the kind and parameters of the fluid) may cause phenomena having a negative impact on the environment and be destructive to the product's durability.

It often happens that process parameters require application of valves designed strictly for flow parameters, so as to eliminate the occurrence of such phenomena as cavitation, chocked flow, noise and to prevent erosion of internal parts.

This catalogue card presents some of most commonly used valve designs, which are comprised in Z1B series, but being special executions, were not included in the main catalogue card of Z1B valves.

Valve with two-step plug

Valves with two-step plugs are designed for eliminating cavitation and chocked flow. Each step of throttling has been precisely selected, so as to generate pressure drops below critical values at each point of work. Valve's internal parts are toughened or stellited and nitrided.

Valve with two-step plug and throttling cage

Valves with two-step plugs are designed for eliminating cavitation and chocked flow. Additional throttling cage is to implement additional throttling step and to reduce the noise level through multihole structure. Valve's internal parts are toughened or stellited and nitrided.

Valve with three-step plug and filtrating element under the seat

Valves with two-step plugs are designed for eliminating cavitation and chocked flow for higher pressure drops than valves with two-step plugs. Additional filtrating structure under the seat is to protect internal parts against damaging effect of solid particles, which may be present in the fluid. Valve's internal parts are toughened or stellited and nitrided.

Valve with three-step plug and throttling cage

Valves with three-step plugs are designed for eliminating cavitation and chocked flow for higher pressure drops than valves with two-step plugs. Additional throttling cage is to implement additional throttling step and to reduce the noise level through multihole structure. Valve's internal parts are toughened or stellited and nitrided.

Valve with two-step perforated plug and two-step active throttling cage

Valves with multi-step active throttling structures in a form of perforated multihole elements, are used for regulation of steam flow, as well as other gas fluids at high pressure drops. This design aims at eliminating chocked flow and excessive noise. Valve's internal parts are toughened or stellited and nitrided.

Valve with two-step plug pilot balanced and throttling plate

Valves with plug balanced by inner pilot are used for applications requiring increased rangeability. Due to plug being balanced by pilot, it is possible to achieve very high disposable pressure drops at small half-opening of the valve plug and high shut-off tightness of the valve. Valve's internal parts are toughened or stellited and nitrided.

Valves DN150-300 for nominal pressures PN160-420

Valves for nominal pressures higher than those in the main catalogue card of Z1B valves are made available upon customised requests. Due to large bonnet diameter and high pressure, the packing system in a form of conical self-tightening (under pressure inside the valve) seal was used. Product versions with pressure balanced plugs in different materials are available.

SINGLE-PORTED GLOBE CONTROL VALVES TYPE Z®2

APPLICATION AREA:

Single-ported globe control valves type $Z^{\otimes}2$ are used in automatic systems and remote control instalations as executive elements to control flow of liquids and gases. Operation (reverse action – air-to-open) and actuator assembly are adapted for SIEMENS electric and electro-hydraulic actuators. Recommended for application in city heating and HVAC systems and many branches of industry.

FEATURES:

- wide range of nominal dimensions, DN15...150 for nominal pressures PN10...40; CL150; CL300,
- various materials for valve body and internal parts casts, adapted to specific working conditions.
- wide range of flow coefficients and control characteristics,
- easy assembly and dismantling of valve internal parts for maintenance and service,
- high durability and reliability due to application of top-class materials and surface improvement processes (burnishing, stelliting, heat treatment, CrN coatings),
- possibility of mating with emergency function electric and electro-hydraulic actuators (no air – valve closed) or without emergency function (no air - valve remains in previous position),
- wide range of electric actuators, regarding supply and control type, available forces, operation speed and accessories,
- high tightness of closure due to application of soft seats (PTFE sealing) in the whole range of flows and characteristics, for balanced and unbalanced plugs.
- same flow ratios and control characteristics for "hard" (metal-metal) and "soft" (metal-gasket) seats, for lightened and non-lightened plugs,
- reliable connection between actuator stem and valve, and between seat and body,
- small resetting forces due to application of lightened plugs for valves DN32...150,
- top-class flat sealing and bonnet packing,
- competitive prices due to simple and functional design of valves and actuators and materials applied,
- design and production processes meet the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines.

 $Z^{(R)}$ - is a trademark registered with Republic of Poland Patent Office

DESIGN AND TECHNICAL SPECIFIACTION:

Boo	ly (1):	Sir NDN1	ngle-	-port	ed, fl	lange	ed, ca	ast, v	/ith ir	ntegra	ated	bonn	iet.									
Non	ninal size	SUIR.	5, Z	0, 25	D, 32	, 40,	50; C);80 ⊃N10); 100): 16:	J; 15 25:4	0 0 (as	ner F	N-F	N 109	92-1.	2010	and	PN-F	N 10	92-2.	1999).	
11011	inter proc	Jouro.					(CL15	50; Cl	L300	(as	per P	N-E	N 17	59-1:	2005	5).			02 2.	1000),	
Stee	el flanges	CL15	50; C	CL30	0 are	e so d	desig	ned	hat t	hey c	àn b	e ass	semb	led v	vith f	lange	és ex	ecute	ed pe	er Am	erican	
stan	dards AN	ISI/AS	SME	B16	5.5 ar	nd MS	SS SI	P44.	In An	neric	an st	anda	rds f	ange	es are	e ider	ntified	d with	n non	ninal	values	
in "C	Classes",	to wh	ich i	nomi	nal p	press	ure (י (PN	value	s as	per I	PN-IS	50 7	005-1	1:200)2 co	rresp	ond.				
Equ	ivalent id	entific	catio	n as	per	PN a	re:				CL	150:	PN 2	20 a	nd	С	L300): PN	50.			
Tabl	e 1. Flan	ged e	end c	conne	ectio	ns																
	Matoria	1		No	minal	nroccu	ro		Dalaad	face		Cr	Fac	cing of	flange	types			Din	a loint		
	Wateria	11		110	IIIIIai	pressu	10		naiseu	lace		Iden				ntification						
	Grey irc	iron	-+	DN	PN10); 16 3: 25: 4	0	{				-			-				-			
	opheroidal	11011		PN	110; 16	5; 25; 4 5; 25; 4	0		B ²⁾			 D			- F				-			
	Cast ste	el	+			50 800		{			-	וח	- (D1 ¹)			- F (F1)		-	J	(RTJ)		
	1) - only	for Cl	L300;	²) - B ²	1 – (Ra	=12.5	mm, c	oncenti	ric surf	ace str	ucture	"C"), I	32 – (R	la as ag	greed v	vith the	e custo	mer);			
					De	nihla -	() - ide	ntificat	ion of c	connec	tions a	s per A	SME E	316.5	nderel							
_					205	SIDIE E			anges	per spe	cincat				muards							
Face	e-to-face c	limmer	nsior	າs (bo	ody):	as pe	r PN-	EN 6	0534- 7 for	-3-1; 1	2000r	: - Fig	j. 2 ; `	Table	11 ar	1d 12	. Seri	es 1 ·	for F	2N10;		
Valv	e nlua	(2) - 0	onto	ured	10, 23 Luni	o, 40 halar	, sen iced	es s (Kvs	0 25	25	50, 8) or h	alan	red i	- 101 v Kvs	UL3U 16	10 320)						
vari	e plug	•	cont	rolc	hara	cteris	stics:	(100	0,20	20	- lir	near	ocu	100	10	020)		(L)				
											- e	qual	perce	entag	je			(P)				
		•	rang	jeabi	ility:					_	- 5	D:1										
Tabl	e 2. K _{vs} f	low ra	itio a	and c	alcu	latior		fficie	nts (⊢ _{D4} ,	⊢ _{D6})											
	K _{vs}	0,25	0,40	0,63	1,0	1,6	2,5	4,0	6,3	8,0	10	16	20	25	40	63	94	125	160	250	320	
Str	oke [mm]					<u> </u>		2	0									4	0			
5	Seat dia. D [mm]		12	,7			19,1		20,6	22,5	25,3	28,5	31,7	33,5	41,3	50,8	66,7	88	8,9	107,9	127	
	15	N	N	N	N	N	N	N														
	20	N	N N	N	N	N	N N	N	N N	N												
	32	N	N	N	N	N	N	N	N	N	N	N,O										
DN	40	N	N N	N	N N	N	N N	N	N N	N	N N	N,0 N.0	N,0 N.0	N,0 N.0	0							
	65											N,0	N,0	N,0	0	0						
	100													N,0	0	0	0	0	0			
	150															0	0	0	0	0	0	
	F _{D4} [kN]		0,	2			0,3		0,33	0,36	0,4	0,45	0,5	0,53	0,7	0,8	1,1	1	,4	1,7	2,0	
	F _{d6} [Kin]		0,	3			0,48		0,5	0,6	0,6	0,75	0,8	0,9	1,0	1,3	1,6	2	,2	2,7	3,2	
DN2	5 - Kvs 8;	DN32	- Kv	/s16;	DN4	0 - K\	/s25 -	only	meta	llic se	eats,	N - ur	ibala	nced	valve	plug	s, O -	- bala	nced	valve	plugs	
varv Loa	/e seat (. kago cla	5): 55'		20	nor		aro, n =N 60	1etai 1534	IIC, ● _∕I	SOIL,	with	PIF	E se	aling								
Lea	naye cia	33.		a3	p hei	for r	netal	lic se	ats:				- bas	sic. (d	class	IV)						
						for s	soft s	eats					- bul	ble-	tight	(clas	s VI)					
In ca	ase of hig	hly ab	orasiv	ve m	ediur	n, ca	vitatio	on, hi	gh te	mper	ature	s and	d flov	v velo	ocity i	t is re	ecom	meno	ded t	hat st	elliting	
of pl	ugs and r	netalli	c se	ats (s	seat s	surfa	ces, g	guide	surfa	aces	or all	profil	e) is	perfo	rmec	l, or p	plasm	na nit	riding	(teni	fering)	
ot pl	ug. Wher	e med	lum	corrc	osion	cond	litions	allo	N to l	ise p	iugs,	seats	s and	sten	ns in	neat	treate	ea ste	el X	17Crl	NI 16-2	
Ster	n (4) [.]					- bu	rnish	ed a	nd no	olishe	ed se	alino	inte	rface								
Pac	kings (5)):						54 4	pt													
- ter	np. range	e -20	0+	220°	°C	- PT	FE-\	/ ma	inten	ance	-free	pacl	king	kit, co	ompr	esse	d wit	h scr	ew s	pring	ļ	
						- rin	g gas	skets	form	ned ir	n bra	ided	seali	ng co	ords	of PT	FE+(GRAF	PHITE			
		00		0500/	~	- va	Ives	with	balar	iced	plug	and/	or tig	nt se	at							
Flui	d flow di	22 irectiv	03	0.00cc	en	- rin	y ya	skets	in gi	aphi	ie, m	ietaili	c se	สเร								
1 101		out	l	.5 OP	UI.																	

Table 3.	100	Mater	ial: EN-GJL	250 as per F	PN-EN 1561	ang c	verp	10330]	511013	at pl	oper	cinp			
	Temperature I'Cl																
PN	Standard	-10	120	150 180 200 230 250 300							1. It is allowed to apply spheroidal iron						
				Allowa	able working	pressure [t	bar]		1	1	carbon steel and acid proof cast stee						
PN10		10)	9	8,4	8	7,4 7 6		6	1		for te	empe	rature	es lower than given ir		
PN16	PN-EN 1092-2	16	;	14,4	13,4	12,8	11,8	11,2	9,6	1		Tabl	es [`] 3.	9, p	provided that working		
Table /		Material: EN-G	15 /00-18	T as per PN	-EN 1563						1	pres	sure	is re	educed respectively		
Table 4.		Material. EN-G	133 400-10	LI as per Fix	Temn	erature I'C	1				{	work	king te	empe	rature impact tests are		
PN	Norma	-10	120	150 200 250 300					350	1	perfo	orme	d and	cast is heat treated			
	Norma	-10120		Allowable working pressu			ure [bar]			000	-	Deta	ails a	are to	be consulted with		
PN10		10		97	9	2		8 7	8	7		man	ufact	urer.	• • • • • • •		
PN16	-	16 16 25 40		15.5	15,5 14,7 24,3 23 38,8 36,8		1	3.9	12.8	. 11.2	2.	VVor	king	press	sure for intermediate		
PN25	PN-EN 1092-2			24,3			2	21,8		17,5	1	temp	Derati	ire va	liues can be calculated		
PN40	1			38,8			34,8		32	28	1	by Ir	iterpo	latior	1.		
													1				
Table 5.	Material:	GP240GH (1.0	0619) as per	PN-EN 102	13-2	т							4				
DN / CI	Normo			Tempe		perature [C	11210F0 [U]		250	1	100	{					
PN/GL	Norma	-1050	100	150	200		200		300	350	-	100	4				
PN10		10	9.2	8.8	8,3		7,6		6.9	6.4		5.9	1				
PN16	EN 1092-1	16 14,8 1		14	14 13,3		12,1		11	10,2		9,5	1				
CL150	PN-EN 1759-1	17,3	15,4	14,6	13	,8	12,1		10,2	8,4	6,5						
PN25	5114000.4	25	23,2	22	20	,8		19	17,2	16	1	4,8	1				
PN40	EN 1092-1	40	37,1	35,2	33	,3	3	0,4	27,6	25,7	23,8						
CL300	PN-EN 1759-1	45,3	40,1	38,1	36	6	3	2,9	29,8	27,8	2	5,7	J				
Table 6.		Material: 0	GX5CrNiMo	19-11-2 (1.4	408) as per F	PN-EN 102	13-4]		
							Tem	perature ['C	1				,]		
PN / CL	Norma	-1050 100 150 200 250 300						350	4	100	425	450					
			<u> </u>			A	llowable wo	orking press	ure [bar]		,		<u> </u>		-		
PN10	EN 1092-1	10	10	9	8,4	4		7,9	7,4	7,1	6	5,8 0.0	-	6,7	-		
CL 150	PN-EN 1759-1	17.9	16.3	14,5	13,	5		2,7	10.2	8.4		0,9 3.5	5.6	10,7			
PN25	110-EN 1733-1	25	25	22.7	21			9.8	18.5	17.8		7.1	- 3,0	16.8	-		
PN40	EN 1092-1	40	40	36,3	33,	7	3	1,8	29,7	28,5	2	7,4	-	26,9	-		
CL300	PN-EN 1759-1	46,7	42,5	38,9	35,	3	3	2,9	30,5	28,8	2	7,6	27,2	26,9			
Table 7.	Material: G20Mn5 (1.	6220) wg PN-	EN 10213-3]					-		
	Norma	Temperature ['C]															
PN / CL		-40 100 150 200 250 300							300	1							
		-		Allowab	le working pr	essure [[t	par]		1	-							
PN10		6	6	3,8	3,6		3	,48	3,4	{							
PN16 PN25	-	25	25	15.8	9,0)	9	4 5	9,07	1							
PN40		40	28	28	27			26	25	1							
Table 8.		Material: WCB	as per AS	TM A216					<u> </u>				1				
						Tem	perature ['C	;]					1				
PN / CL	Norma	-1050	100	150	20	D	2	250	300	350	375	400]				
		Allowable working pressure [bar]										,					
PN10	EN 1092-1	10	10	9,7	9,4	4		9	8,3	7,9	7,7	6,7	-				
PN16	DN 51 4750 4	16	16	15,6	15,	1	1	4,4	13,4	12,8	12,4	10,8					
CL150	PN-EN 1759-1	19,3	25	15,8	14	7	1	2,1	20.0	8,4 20	10.4	6,5 16.0					
PN40	EN 1092-1	40	40	39.1	37	9	2	36	33.5	31.9	31.1	27	-				
CL300	PN-EN 1759-1	50	46,4	45,1	43,	9	4	1,8	38,9	36,9	36,6	34,6	1				
Table 9.	1	Material:	CF8M as p	er ASTM A3	51												
DN / OI	News	10 50	Temperature ['C]							495	450						
PN/GL	Norma	-1050	100	150	20		llowable wa	200	Jou Journa [bar]	350	3/5	400	425	450			
DNHO		0.0	7.0	71		A		s 1	nie [Dat]	5.6	5.5	5 A	5.4	5.2			
PN IU PN 16	EN 1092-1	0,9 14.2	1,0 12.5	1,1 11 A	10	, 6		9.8	0,8 0,3	0,0 Q	0,0 8.8	5,4 8.7	5,4 8.6	0,0 85			
CL150	PN-EN 1759-1	18.4	16	14.8	13	6		12	10.2	8.4	7.4	6.5	5.6	4.6			
PN25		22,3	19,5	17,8	16.	5	1	5,5	14,6	14,1	13,8	13,6	13,5	13,4			
PN40	EN 1092-1	35,6	31,3	28,5	26,	4	2	4,7	23,4	22,6	22,1	21,8	21,6	21,4			
CL300	PN-EN 1759-1	48,1	42,3	38,6	35,	8	3	3,5	31,6	30,4	29,6	29,3	29	29			

Single-ported globe control valves - Type Z2

ALLOWABLE PRESSURE DROPS Δp .

Pressure drops Δp [bar] refer to closed valve and they are calculated with regard to actuator capabilities. Actual pressure drops should not exceed 70% of allowable working pressure for the given nominal pressure, material execution and working temperature, as per tables 3...11.

Table 10: Technical specification of actuators

						Emer- gency	Emorgonov		Acces	Allowable		
Actuator	Stroke	Available force	Supply voltage	Control	Course		operation time					working
Notuator	[mm]	[kN]	[V , AC]	oontroi	time [s]			1S	28	1P	1SP	temperature
						oporation	[0]		ļ			['C]
SQX 31.00		0,5			150			Х	X		Х	140
SQX 31.03		0,5			35			Х	Х		Х	140
SQX 31.06	20	0,5		3 points.	300			Х	Х		Х	140
SKD 32.50		0,8	230		120				Х	Х		140
SKD 32.51		0,6			120	Х	8		Х	Х		140
SKB 32.50		3,5			120				Х	Х		220)*
SKB 32.51		2,8			120	Х	10		Х	Х		220)*
SKC 32.60		3,5			120				Х	Х		220)*
SKC 32.61		2,8			120	Х	18		Х	Х		220)*
SQX 81.00	00	0,5	24		150			Х	Х		Х	140
SQX 81.03		0,5		0 nainta	35			Х	Х		Х	140
SKD 82.50	20	0,8		5 points.	120				Х	Х		140
SKD 82.51		0,6			120	Х	8		Х	Х		140
SQX 61		0,5			35							140
SKD 62	20	0,6	24	constant 010V	30	Х	15	Х				140
SKB 62		2,8	24		120	Х	15	Х				220)*
SKC 62	40	2,8			120	Х	20	Х				220)*

Accessories:

1S - one auxiliary switch,

2S - two auxiliary switches,

1P - one potentiometer 1000 Ω ,

1SP - one auxiliary switch and one potentiometer 1000 $\Omega.$

Note:

- only one accessory can be ordered, all actuators are fitted with a handwheel, casing protection class IP54,

-)* in special execution up to +350°C

Table 11. Sizes of acutated valves [mm].

		А		В	()
DN	CL150	CL300	PN1040	[mm]	stroke 20 [mm]	stroke 38 [mm]
15		190	130			
20	184	194	150	92	93	
25		197	160			
32	200	213	180	111		-
40	222	235	200	113	114	
50	254	267	230	120		
65	276	292	290	156	100	150
80	298	317	310	160	130	100
100	352	368	350	168	167	187
150	451	473	480	218	-	210

Stroke	E	ØF
20	96,5	10
40	116,5	14

<u>NOTE:</u> Face-to-face A dimension for CL150 and CL300 refer to bodies with B or RF seat. For other executions of body you can calculate A_1 from formulas presented in Table 12.

Table 12.

Dody	Mar	king	
Bouy	PN	ANSI	A 1
Groove CL300	D1	GF	A A . 5 x 2
Recess CL300	F1	FF	$A_1 = A + 5 \times 2$
Ring-joint CL300 DN15			A ₁ = A + 5,5 x 2
Ring-joint CL150] ,	DTI	A A 65 20
Ring-joint CL300 DN2040] J		A 1= A + 0,5 X Z
Ring-joint CL300 DN50250			A 1 = A + 8 x 2

MARKING EXAMPLE:

Control valve type Z2 with standard bonnet, braided graphite valve stem packing, leakage class VI, equal percentage contoured plug, execution in stainless steel:

E-Z2-1D680P5

Marking is shown on valve nameplate.

Additional information:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- fluid group [1 or 2],
- serial number and year of manufacture.

ORDERING:

The order should contain all information as per data questionnaire. Full information can be obtained from the Sales and Marketing Department or Technical Department.

THREE-WAY CONTROL VALVES TYPE Z3®

APPLICATION AREA:

Three-way control valves type $Z^{\otimes}3$ are used in automatic systems and remote control systems as flow control elements to adjust flow of liquids and gases. Type Z3M is designed to mix two streams of medium, whereas type Z3R is designed to split one stream into two. Recommended for application in city-heating and HVAC systems and many branches of industry. They can be delivered with P/R actuators (basic option) or with P1/R1; P3/R3 acutators (upon request) electric actuators, handwheels type 20 or with no drives.

FEATURES:

- wide range of nominal dimensions, DN15...150 for nominal pressures PN10...40; CL150; CL300,
- various materials of valve body and internal parts casts, adapted to specific working conditions,
- wide range of flow coefficients,
- reduction in aggressive and toxic fluids emissions to environment through application of bellow seal bonnets or bonnet packings meeting requirements of TA - LUFT,
- easy assembly and dismantling of valve internal parts for maintenance and service,
- high durability and reliability due to application of top-class materials and surface improvement processes (burnishing, stelliting, heat treatment, CrN coatings),
- possibility of mating with P/R multi-spring actuators (basic option), P1/R1. Full reversibility of actuator operation and changing the spring range with no extra parts,
- optional fitting of pneumatic actuators with a handwheel,
- option of diagnostics of "valve actuator" system, thanks to application of smart electro-pneumatic positioners,
- high tightness of closure due to application of soft seats (PTFE sealing) in the whole range of flow ratios,
- same flow ratios and control characteristics for "hard" (metal-to-metal) and "soft" (metal-gasket) seats,
- reliable connection between actuator stem and valve, and between screwed in seat and body,
- top-class flat sealing and bonnet packing,
- broad range of electric actuators,
- possibility of mating with handwheels type 20 or NN,
- special executions for oxygen, hydrogen, acidic gases with H₂S content, explosive atmospheres as per ATEX Directive 94/9/EC,
- competitive prices due to simple and functional design of valves and actuators and materials applied,
- design and production process meet the requirements of Quality Management System ISO 9001 and Directive 97/23/EC, and regulations of AD2000 Merkblatt, designated for installation on pipelines.

 $\mathbf{Z3}^{(\!\!R\!)}$ - is a trademark registered with Republic of Poland Patent Office

DESIGN AND TECHNICAL SPECIFIACTION:

Body (1):

flanged, cast, with integrated bonnet (cast iron execution) or welded bonnet (cast steel execution). Nominal size: DN15; 20; 25; 32; 40; 50; 65; 80; 100; 150 *)

Nominal pressure:

PN10; 16; 25; 40 (as per PN-EN 1092-1:2010 and PN-EN 1092-2:1999); CL150; CL300 (as per PN-EN 1759-1:2005) *)

*) higher nominal dimensions [DN] and higher nominal pressures are available after agreement with the manufacturer Steel flanges CL150; CL300 are so designed that they can be assembled with flanges executed per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. Equivalent identification as per PN are: CL150: PN 20 and CL300: PN 50.

Table 1. Flanged end connections

Facing of flange types Raised face Groove Ring - joint Material Nominal pressure Recess Identification PN10; 16 Grey iron Spheroidal iron PN10; 16; 25; 40 PN10; 16; 25; 40 B 2) D F Cast steel CL150 J (RTJ) CL300 DL (D1 1) F (F1) 1) - only for CL300; 2) - B1 – (Ra=12.5 mm, concentric surface structure "C"), B2 – (Ra as agreed with the customer); () - identification of connections as per ASME B16.5 Possible execution of flanges per specification and indicated standards face-to-face dimensions (body): as per PN-EN 60534-3-1; 2000r; series 1 - for PN10; 16; 25; 40; series 37for CL150; series 38 - for CL300 Bonnet (1a) - standard or extension bonnet integrated with body; cast or welded depending on material - refer to Table 3 - flanged: steel (rod); stub offset from axis as per Fig.5; Table 14 **Stub** (2) Valve plug (3) - contoured-piston (with side type cuts), linear control characteristics - rangeability 50:1 Seats (4) - screwed in (4.1) and fitted-in (4.2): • hard, • soft with PTFE packing - burnished or toughened with polished sealing face. Valve plug stem (5) Sealing (7.8) - body gaskets: spiral type, "graphite+1.4404", bonnet gaskets: as per Table 2. Table 2. Packing types with application ranges. Temperature [°C] / Bonnet PN/CL Packing Standard Extension PTFE-V -198...-46 PTFE + Graphite -46...+200 +200...+300 PTFE-V / TA-LUFT PN10...CL300 Graphite +200...+300 +300...+450 Graphite / TA-LUFT Class IV as per PN-EN 60534-4 - hard valve seat Leakage class: - basic:

- bubble-tight: Class VI as per PN-EN 60534-4 - soft valve seat

Three-way control valves Type Z3

Special designs: Control valve with below seal and control valve with welded ends. (dimensions must be agreed with producer.

Fig. 3. Control valve with below seal Table 3. Listing of components with materials

Rys. 4. control valve with welded ends

Poz.	Component	Materials										
1	Body	EN-GJL 250	EN-GJS 400-18 LT	GP 240 GH ; (1.0619)	WCB	G20Mn5 (1.6220)	GX5CrNiMo 19-11-2 (1.4408)	CF8M				
1a	Bonnet	(EN-JL 1040)	(EN-JS 1025)	S 355 J2G3	3(1.0570)	G20Mn5 (1.6220)	X6CrNiMoTi 17-12-	2 (1.4571)				
2	Stub		S 355 J2G3 (1.	0570)		P355 NL2 (1 1106)	X6CrNiMoTi 17-12-	2 (1.4571)				
				X6CrNi	iMoTi 17-12-2	(1.4571)						
3	Plug			X6CrNiMoTi 1	7-12-2; (1.457	1) + stellite + CrN						
				X17CrNi 16	-2 ; (1.4057) +	heat treatment						
4.4	Screwed in seat			X6GrNiMaT	IVIOTI 17-12-2;	(1.45/1) 571) · · · · · · · · · · · · · · · · · · ·						
4.1	Fitted in seat			X6CrNiMoT	1 17-12-2, (1.4) 1 17-19-9: (1 /	571) + Stellite 571) + PTFF						
7.2				X17CrNi 1F	5-2· (1 4057) +	heat treatment						
-	Store			X6CrNi	MoTi 17-12-2;	(1.4571)						
Э	Stelli			X17	CrNi 16-2; (1.4	057);						
6	Guiding sleeve			X6CrNiMo	Ti 17-12-2; (1.4	4571) + CrN						
				X17CrN	<u>Ni 16-2; (1.405)</u>	7) + CrN						
	Body gasket			Grafit	(98%) + 1.4404	4 (spiral)						
	Packing kit		PIFE + GKAFII DTEE - V"									
0	Facking Kit		GRAFIT									
9	Disk spring		12R10 (SANDVIK)									
10.1												
10.2	Bolt		8.8 A4 - 70									
11.1 11.2	Nut		8				A4 - 70					
12	Press lever			¥00-N	C45	(4.4574)						
14 1	Fixing nut				WOTI 17-12-2;	(1.40/1)						
14.2	Press sleeve			X6CrNi	MoTi 17-12-2;	(1.4571)						
15.1	Spacer sleeve			X6CrNi	MoTi 17-12-2;	(1.4571)						
16	Nut (low)		C45	Vco.Ni	MaT: 17 10 0.	X6Cr	NiMoTi 17-12-2; (1.4571)				
18	Compression plate			X6CrNi	MoTi 17-12-2; MoTi 17-12-2:	(1.4071) (1.4571)						
	Compression plate		Relevan	t material standards	1011111122,	(1.1011)						
	Material				Numer normy	1						
E	N-GJL 250 ; (EN-JL 1040)				PN-EN 1561							
EN-G	<u>JS 400-18 L1 ; (EN-JS 1025)</u>				PN-EN 1563	0						
	WCB				ASTM A 216	2						
	G20Mn5 ; (1.6220)	PN-EN 10213-3										
GX	5CrNiMo 19-11-2 ; (1.4408)				PN-EN 10213-	4						
	CF8M				ASTM A 351							
	<u>S 355 J2G3 ; (1.0570)</u> P355 NL2 · (1.1106)				PN-EN 10025	2						
X6(PN-FN 10028	5						
	X17CrNi 16-2 ; (1.4057)				PN-EN 10088							
	C45				PN-EN 10083-	1						

NOTE:

Hardening method used for hardening of valve internal parts comprises:

a) stelliting – padding of surfaces with stellite: ~40HRC

b) CrN coating – introducing chromium nitride to external layer of detail, to the depth of ca.0.1 mm:~950HV c) heat treatment: valve plug (~45HRC), valve seat (~35HRC), guiding sleeve (~45HRC)

	Tabl	e 41	0. Allo	owabl	e worl	king o	overp	pressu	ire fo	r mat	erial	s at pr	oper	temp	eratures
Table 4.		Mater	al: EN-GJL	250 as per F	PN-EN 1561					1					
					Temperatu	re ['C]				1	NC				
PN	Standard	-10	120	150	180	200	230	250	300	1	1	lt ic /	مالم	od to	apply spheroidal iron
		<u> </u>		Allowa	able working	pressure [t	Dar]			1	1.	carb	on ste	ol an	apply splicioldal lioli,
PN10		10		9	8,4	8	7,4	7	6	1		for te		rature	a lower than given in
PN16	PN-EN 1092-2	16		14.4	13.4	12.8	11.8	11.2	9.6	1				10	s lower than given in
				,.	10,1	. 2,0	,0	,2	0,0	J		Table	25 4	. 10,	
Table 5.		Material: EN-G	JS 400-18	LT as per PN	-EN 1563						1	pres	sure	IS IE	auced respectively,
					Temp	erature ['C]					WOLK	ing te	emper	ature impact tests are
PN	Norma	-10	120	150	20	0	2	250	300	350		perto	ormeo	i and	cast is neat treated.
					Allowable woi	king press	ure [bar]				1	Deta	alls a	re to	be consulted with
PN10	1	10		9,7	9,	2	1	8,7	8	7	1	man	ufactu	urer.	.
PN16	1	16		15,5	14	,7	1	3,9	12,8	11,2	2.	VVorl	king j	press	ure for intermediate
PN25	PN-EN 1092-2	25		24,3	23	3	2	1,8	20	17,5	1	temp	eratu	re va	lues can be calculated
PN40	1	40		38,8	36	,8	3	34,8	32	28	1	by in	terpo	lation	1.
		1									J		,		
Table 6.	Material:	GP240GH (1.0	619) as per	PN-EN 1021	3-2										
						Temp	perature ['C]			. <u> </u>		-		
PN / CL	Norma	-1050	100	150	20	0	2	250	300	350		400	4		
					Al	lowable wo	rking press	sure [bar]			. <u> </u>				
PN10	EN 1092-1	10	9,2	8,8	8,	3	-	7,6	6,9	6,4		5,9			
PN16		16	14,8	14	13	,3	1	2,1	11	10,2		9,5			
CL150	PN-EN 1759-1	17,3	15,4	14,6	13	,8	1	2,1	10,2	8,4		6,5			
PN25	EN 1092-1	25	23,2	22	20	,8		19	17,2	10		14,8	{		
CL 300	DN_EN 1750_1	40	37,1	30,2 20.1	33	,3	3	20	27,0	20,7		23,8			
61300	FIN-EIN 1759-1	40,0	40,1	30,1		5	3	52,9	29,0	27,0		23,7			-
Table 7.	,	Material: 0	X5CrNiMo	19-11-2 (1.4	408) as per F	PN-EN 102	13-4								
			. <u> </u>				Tem	perature ['C]	. <u> </u>					-
PN / CL	Norma	-1050	100	150	20	0	2	250	300	350		400	425	450	-
	ļ		·	. <u> </u>		A	llowable wo	orking press	ure [bar]	· · · · ·			. <u> </u>	. <u> </u>	-
PN10	EN 1092-1	10	10	9	8,	4		7,9	7,4	7,1		6,8	-	6,7	
PN16	DN 51 4750 4	10	10	14,5	13	,4 F	1	2,7	11,8	11,4		10,9	-	10,7	
DN25	PN-EN 1/59-1	17,9	25	14,9 22.7	13	,ə 1		0.9	19.5	0,4 17.9		17.1	5,6	4,7	
PN40	EN 1092-1	40	40	36.3	33	7	3	1.8	29.7	28.5		27.4		26.9	
CL300	PN-EN 1759-1	46.7	42.5	38.9	35	.3	3	2.9	30.5	28.8		27.6	27.2	26.9	
Table 8.	Material: G20Mn5 (1	.6220) wa PN-	EN 10213-3			-				1					1
		, .			Temperatur	e ['C]				1					
PN / CL	Norma	-40	100	150	20)	2	250	300	1					
				Allowab	le working pi	ressure [[t	ar]			1					
PN10		6	6	3,8	3,6	6	3	,48	3,4	1					
PN16		16	16	10,1	9,6	6	9	,28	9,07	1					
PN25	-	25	25	15,8	15	i	1	4,5	14,2	1					
PN40		40	28	28	27	,	:	26	25						
Table 9.		Material: WCB	as per AS	TM A216]		
					,	Temp	perature ['C	;]							
PN / CL	Norma	-1050	100	150	20	0	2	250	300	350	375	400			
					AI	lowable wo	rking press	sure [bar]							
PN10	EN 1092-1	10	10	9,7	9,	4		9	8,3	7,9	7,7	6,7	_		
PN16		16	16	15,6	15	,1	1	4,4	13,4	12,8	12,4	10,8	-		
CL150	PN-EN 1759-1	19,3	17,7	15,8	14	1	1	2,1	10,2	8,4	7,4	6,5	-		
PN25	EN 1092-1	25	25	24,4	23	,/	2	2,5	20,9	20	19,4	16,9	-		
CL 200	DN EN 1750 1	40	40	39,1	37	,9		30	33,5	31,9	31,1	2/			
01300	TN-EN 1733-1	50	40,4	40,1	43	,5	4	1,0	30,9	30,3	30,0	34,0			
Table 10.		Material:	CF8M as	per ASTM A3	351										
							Tem	perature ['C]							
PN / CL	Norma	-1050	100	150	20	00	:	250	300	350	375	400	425	450	
						Al	llowable wo	orking press	ure [bar]						
PN10	EN 1002-1	8,9	7,8	7,1	6,	6	6	6,1	5,8	5,6	5,5	5,4	5,4	5,3	
PN16	LIN 1002"1	14,3	12,5	11,4	10	,6		9,8	9,3	9	8,8	8,7	8,6	8,5	
CL150	PN-EN 1759-1	18,4	16	14,8	13	,6	· ·	12	10,2	8,4	7,4	6,5	5,6	4,6	
PN25	EN 1092-1	22,3	19,5	17,8	16	,5	1	5,5	14,6	14,1	13,8	13,6	13,5	13,4	
PN40		35,6	31,3	28,5	26	,4	2	4,7	23,4	22,6	22,1	21,8	21,6	21,4	
CL300	PN-EN 1759-1	48,1	42,3	38,6	35	,8	3	3,5	31,6	30,4	29,6	29,3	29	29	

Kvs		0,63	1,0	1,6	2,5	4,0	6,3	10	16	25	40	63	94	125	160	250	320
Stroke [mm]							20					38		50			
Seat dia. [mm] D)		12	2,7		19	,05	20,64	25,25	31,72	41,25	50,8	66,7	88,9		107,92	126,95
ĺ	15																
	20																
	25																
- 	32																
	40																
DN	50																
	65																
	80																
	100																
	150																
Metallic seat	Fn	0,	2	0	2	0,	33	0	,4	0,5	0,7	0,8	1,1	1	,4	1,7	2,0
Soft seat	[kŇ]	0,2	25	0	,o	0	,5	0,5	0,6	0,8	1,0	1,3	1,7	2	,2	2,7	3,2

ALLOWABLE PRESSURE DROPS $\triangle p$.

∆p [bar] Fs [kN]

F_D[kN]

D

Pressure drops Δp [bar] refer to closed valve and they are calculated for valve drive potential. Actual pressure drops should not exceed 70% of allowable working pressure for given nominal pressure, material execution and working temperature, as per tables 4...10.

$$\Delta p = \frac{Fs - F_{D}}{0.785 \cdot 10^{-4} \cdot D^{2}} \quad \text{or} \quad Fs = 0.785 \cdot 10^{-4} \cdot D^{2} \cdot \Delta p + F_{D}$$

where

- calculated pressure drop
- actuator available force (Table 11)
 - valve plug to valve seat pressure (Table 10)
- valve seat diameter [mm] (Table 10)

Table 12:Available force F_s [kN] of pneumatic actuators

	[[Direct actuator I	כ	Reverse actuator R								
Actuator aiza	Su	oply pressure [k	:Pa]			Spring ra	nge [kPa]					
ACTUALOT SIZE	140	250	400	20 - 100	40 - 120; 40 - 200	60 - 140	80 - 240	120 - 280	180 - 380			
160	0,64	2,4	4,8	0,32	0,64	0,96	1,28	1,92	-			
250	1,0	3,8	7,5	0,5	1,0	1,5	2,0	3,0	-			
400	1,6	6,0	12,0	0,8	1,6	2,4	3,2	4,8	-			
630	2,5	9,5	18,9	1,3	2,5	3,8	5,0	7,6	11,3			
1000	4,0	15,0	30,0	2,0	4,0	6,0	8,0	12,0	18,0			

NOTE:

1. For direct actuators P adopted spring range is 20 - 100 kPa

2. For electric and other actuators Δp value can be calculated using above formula and data from Tables 12 and 14, taking nominal load capacity as available force FS, as per actuator catalog chart.

When using pneumatic actuators their available forces are to be calculated separately for extreme position of stem, accounting for operation (direct or reverse), and valve operation (mixing or separation). To facilitate and simplify selection of pneumatic actuators spring ranges and supply pressures were unified, regardless of operation (simple or reverse). For parameters of pneumatic actuators to be used in calculation of available forces refer to Tables 13 and 13a.

Table 13 i 13a. Technical specification of pneumatic actuators

Parameter	Unit			Sr	oring range							
p ₁ - p ₂	[kPa]	20100	40120	60140	80240	80240 120280						
p _z	[kPa]		250			400						
A _s	[cm ²]		160; 250; 400; 630; 1000 630; 1000									
·	i						·					
Actuator ty	pe		P/R									
Size	Size		160 250		630		1000					
H [mm]	H [mm]		20		38	38 38; 50						

where: H - stroke [mm] $p_1 \div p_2$ - spring range [kPa]; p_2 - supply pressure [kPa]; - effective area of actuator diaphragm [cm²]; Available force of pneumatic actuators Fs [kN] is to be derived from below formulas, regarding valve function, actuator operation and pressure point (top or bottom port) a) Valve function: mixing b) Valve function: diverting $\begin{array}{cccc} F_{sP1} = 10^{-4} & (p_z - p_1) \bullet A_s & ; & F_{sR1} = 10^{-4} & p_2 \bullet A_s \\ F_{sP2} = 10^{-4} & p_2 \bullet A_s & ; & F_{sR2} = 10^{-4} & (p_z - p_1) \bullet A_s \end{array}$ Interpretation concerning individual available forces F_s of pneumatic actuators: direct P actuator; closed screwed-in port (top), F_{SP1} F_{SP2} direct P actuator; closed fitted-in port (bottom), F_{SR1} F_{SR2} direct R actuator; closed screwed in port (top), direct R actuator; closed fitted-in port (bottom). NOTE: Ranges 20...100kPa and 180...380kPa are not recommended for mixing function due to high difference between available forces for top and bottom port. R actuator P actuator R actuator P actuator d, L. d,

Three-way control valves Type Z3

Tab	le 14. Control valve	s conneo	ction d	imensi	ons							
	Dimensione	Unit						DN				
	Dimensions	Unit	15	20	25	32	40	50	65	80	100	150
\square	PN10; 16; 25; 40		130	150	160	180	200	230	290	310	350	480
A	CL150	[mm]	-	-	184	-	222	254	-	298	352	451
	CL300	1	-	-	197	-	235	267	-	317	368	473
	В	[mm]		140		16	62	184	215,5	233,5	240	295
	Standard bonnet	[mm]		97		110	117	128	140	146	171	205
	Extension bonnet	[]		297		310	317	328	340	346	371	405
	E ¹⁾	[mm]					125				195 *)	
	F	[mm]					50					100
	d ₁	[mm]					M12x1,25	ō				M16x1,5
	d ₂	[mm]					57,15					84,15
	d ₃	-				2 1	/4"-16UN	I2A				3 5/16"-16NS2A
	Weight	[kg]	8,5	10,5	12	15	18	26,5	36	55	75	150
	¹⁾ - valve in closed position, fitted-in bottom port; ^{*)} - dimension for P/R-1000, for actuators P1/R1 E=125; F=80											
	higher nominal dimensions [DN] are available after agreement with the manufacturer											

Table 15. Application of pneumatic actuators

Actuators		DN												
ACIUAIOIS	15	20	25	32	40	50	65	80	100	150				
P / R - 250														
P / R - 400														
P / R - 630														
P / R - 1000														

Fig.9.Handwheel type 20

Table 16: Sizes and weights of pneumatic actuators P/R and PN/RN - Fig.6.

Actuator size	D ₁	D ₂	H ₁	H ₂	Weigh	nt [kg]
Actuator Size		m	m		P/R	PN/RN
250	240	225	377	474	10	14,5
400	305	220	385	484	16	20,5
630	375	305	477	574	30	37
1000	477	450	660	835	74	100

Table 17: Types, sizes and weights of handwheels type 20 - Fig.7.

Туре	Stroke [mm]	d ₁	d ₂	Н	D	Rev. / stroke	Weight [kg]
20-20-57-M12	20	M10v1 05	57 15		228	8	7,5
20-38-57-M12	20	11/12/1,20	57,15	265	200	15	10
20-38-84-M16	38	Md Cud F	04.15		290	10	10
20-50-84-M16	50	1011021,5	04,15	385	457	16	16

Marking method:

Example: 20-38-57-M12 - handwheel type 20; stroke 38 mm; d_2 =57.15mm; d_1 =M12x1.25

MARKING EXAMPLE:

Control valve type Z3, mixing function, reverse action pneumatic actuator with top-mounted handweel, extension bonnet, expanded graphite stem seal, leakage class IV, execution in stainless steel:

RN-Z3M-2E470L5

Marking is shown on valve nameplate.

Additional information:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow coefficient [Kvs],
- plug stroke [H],
- fluid group [1 or 2],
- serial number and year of manufacture.

ORDERING:

The order should contain all information as per data questionnaire. Full information can be obtained from the Sales and Marketing Department or Technical Department.

ROTARY PLUG CONTROL VALVES TYPE Z33®

APPLICATION AREA:

Rotary plug control valves Z33 represent the design of valves, where change in flow ratio is achieved through eccentrically set rotary plug.

Such structures are particularly useful for control of flow under heavy-duty conditions, with high probability of cavitation and erosion.

High rangeability (200:1) and wide range of material and design variants make them ideal for application in many branches of industry, such as power generation, metallurgy, chemical and petroleum industry, food industry, paper industry, etc.

FEATURES:

- one-piece valve body (cast with bonnet), no static or dynamic sealing except shaft sealing chamber,
- no "detachment effect" between plug and seat,
- ability to change Kv_s without changing plug or seat,
- easy replacement of rotary, symmetrical plug,
- elongated bonnet allows application of double sealing for shaft, meeting "low emission" standards equal to TA-LUFT conditions,
- the same Kv_s coefficients for "hard" and "soft" seats,
- leakage class less than 0.01%Kvs for "hard" seats (metal-metal),
- same flow direction for "hard" and "soft" seats,
- valve-actuator connection accessible from outside, which allows pivoting actuator to valve axis by 90° increments,
- special executions: with heat jacket, erosion-proof, for crystallizable media.

DESIGN AND TECHNICAL SPECIFICATION:

Body (1)
in cast steel
Nominal sizes:
Nominal pressures:

flanged or flangeless, cast

DN 25; 40; 50; 80; 100; 150; 200; 250; 300 PN10; 16; 25; 40 (as per PN-EN 1092-1:2006); CL150; CL300 (as per PN-EN 1759-1:2005).

Steel flanges CL150; CL300 are so designed that they can be assembled with flanges executed per American standards ANSI/ASME B16.5 and MSS SP44. In American standards flanges are identified with nominal values in "Classes", to which nominal pressure (PN) values as per PN-ISO 7005-1:2002 correspond. Equivalent identification as per PN are: CL150: PN 20 and CL300: PN 50.

Table 1. Nominal pressures and end connections

Daigad faga	Facing of flange types										
naiseu lace	Recess	Ring-joint									
Identification											
B ²⁾	D	F	-								
	-	-									
	DL (D1 1)	F (F1)	J (KIJ)								
	B ²⁾	B 2) D - - DL (D1 1) -	Identification B ²) D F - - - DL (D1 ¹) F (F1)								

Z33[®] is a trademark registered with Republic of Poland Patent Office.

Face-to-face dimensions: a) flanged valves as per PN-EN 60534-3-1:2000: Table 1. Series 1 Table 1 i 2. Series 19 as per ANSI B16.10:1992; b) flangeless (sandwich) as per PN-EN 60534-3-2:2002 functions as rotary closure, cast in grey iron or steel (welded), Bridge (2) Valve plug (3) working piece in the form of globe section: flow characteristics: - linear (L) - equal percentage (P) only with positioner rangeability: 200 : 1 Valve seat (4) loosely resting in body opening; susceptible to fitting to spherical cap of valve plug hard soft (with PTFE sealing) Leakage class: - basic: class IV as per PN-EN 60534-4 - metallic seat - bubble-tight: class VI as per PN-EN 60534-4 - soft seat Screw plug (5) fixing seat to body (medium flow direction "under plug"); in special executions its function is preventing erosion (medium flow direction "above plug")

transmits torque from actuator to valve plug: burnished, with polished sealing interface. Shaft (6) Guiding sleeves of plug (7) and shaft (8) function as slide bearings; surface hardened (CrN coating) or PTFE coated

Packing (9) -packing kits formed in various materials (PTFE-V; PTFE+graphite; braided or expanded graphite); special "low emission" kit, with follower sprigs TA-LUFT.

Table 2. Packing types with application ranges.

Packing	Nominal pressure PN / CL	Temperature [°C]									
PTFE - V											
PTFE + Graphite	PN10 - 40	-46+200									
PTFE - V / TA-LUFT	CL150;										
Graphite	CL300	+200+250									
Graphite / TA-LUFT		(+200+450)*									
	* - drive retracted from valve (extended voke)										

Table 37. Allowable working overpressure for materials at	proper	temperatures
---	--------	--------------

Table 3.	P	Material: Gl	P240GH	(1.0619)	wg PN-	EN 1021	3-2			Table	4.		M	aterial:	GX5CrN	iMo 19-1	1-2 (1.4	408) wg	PN-EN
				T	emperat	ure ['C]					N / CL Norma	Temperature ['C]							
PN / CL	N / CL Norma	-1050	100	150	200	250	300	350	400	PN / CL		-1050	100	150	200	250	300	350	
		-1050 100 150 200 250 300 350 400 Dopuszczalne ciśnienie robocze [bar]													Allowable	e working	pressur	re [bar	
PN10	DN EN 1000 1	10	9,2	8,8	8,3	7,6	6,9	6,4	5,9	PN1	0	DN EN 1000-1	10	10	9	8,4	7,9	7,4	7,1
PN16	PIN-EN 1092-1	16	14,8	14	13,3	12,1	11	10,2	9,5	PN1	6	PN-EN 1092-1	16	16	14,5	13,4	12,7	11,8	11,
CL150	PN-EN 1759-1	17,3	15,4	14,6	13,8	12,1	10,2	8,4	6,5	CL1	50	PN-EN 1759-1	17,9	16,3	14,9	13,5	12,1	10,2	8,4
PN25	DN EN 1000 1	25	23,2	22	20,8	19	17,2	16	14,8	PN2	5	DN EN 1000 1	25	25	22,7	21	19,8	18,5	17,
PN40	PIN-EIN 1092-1	40	37,1	35,2	33,3	30,4	27,6	25,7	23,8	PN4	0	PIN-EIN 1092-1	40	40	36,3	33,7	31,8	29,7	28,
CL300	PN-EN 1759-1	45,3	40,1	38,1	36	32,9	29,8	27,8	25,7	CL30	00	PN-EN 1759-1	46,7	42,5	38,9	35,3	32,9	30,5	28,

Table 5.	Ma	terial: G20	Mn5 (1.6	6220) w	g PN-EN	10213-3	3					
		Temperature ['C]										
PN / CL	Norma	-40	100	150	200	250	300					
		Allowable working pressure [bar]										
PN10		6	6	3,8	3,6	3,48	3,4					
PN16		16	16	10,1	9,6	9,28	9,07					
PN25	-	25	25	15,8	15	14,5	14,2					
PN40		40	28	28	27	26	25					

									10	0	20	21 20	20										
Table 6.			Mate	rial: W	CB wgA	ASTM A2	16				Table 7.	Table 7. Material: CF8M wg ASTM A351											
	Temperature ['C]													Temp	erature [°C]							
PN / CL	Norma	-1050	100	150	200	250	300	350	375	400	PN / CL	Norma	-1050	100	150	200	250	300	350	375	400	425	450
	Allowable working pressure [bar]									Allowable working pressure [bar]													
PN10	EN 1000 1	10	10	9,7	9,4	9	8,3	7,9	7,7	6,7	PN10	EN 1000 1	8,9	7,8	7,1	6,6	6,1	5,8	5,6	5,5	5,4	5,4	5,3
PN16	EN 1092-1	16	16	15,6	15,1	14,4	13,4	12,8	12,4	10,8	PN16	EN 1092-1	14,3	12,5	11,4	10,6	9,8	9,3	9	8,8	8,7	8,6	8,5
CL150	PN-EN 1759-1	19,3	17,7	15,8	14	12,1	10,2	8,4	7,4	6,5	CL150	PN-EN 1759-1	18,4	16	14,8	13,6	12	10,2	8,4	7,4	6,5	5,6	4,6
PN25	EN 1000 1	25	25	24,4	23,7	22,5	20,9	20	19,4	16,9	PN25	EN 1000 1	22,3	19,5	17,8	16,5	15,5	14,6	14,1	13,8	13,6	13,5	13,4
PN40	EN 1092-1	40	40	39,1	37,9	36	33,5	31,9	31,1	27	PN40	EN 1092-1	35,6	31,3	28,5	26,4	24,7	23,4	22,6	22,1	21,8	21,6	21,4
CL300	PN-EN 1759-1	50	46,4	45,1	43,9	41,8	38,9	36,9	36,6	34,6	CL300	PN-EN 1759-1	48,1	42,3	38,6	35,8	33,5	31,6	30,4	29,6	29,3	29	29

NOTES:

- It is allowed to apply carbon steel and acid proof cast steel for temperatures lower than given in Tables 3...7, 1. provided that working pressure is reduced respectively, working temperature impact tests are performed and cast is heat treated. Details are to be consulted with manufacturer.
- 2. Working pressure for intermediate temperature values can be calculated by interpolation.

10213-4

6,8

10,9

6,5

27,4 27.6

400 425

450

6,7

10,7

4,7 5,6 17,1

16,8 26,9

Item	Component			Mate	erials							
1.	Body		NOD	G20Mn5 ;	OVEC-NUM- 10 11 0. (1 4400)	0.5.01						
2.	Bridge	GP240GH; (1.0619)	NCB	(1.6220)	GX5CTNIMO 19-11-2; (1.4408)	6191						
3.	Plua	X6CrNiMo	Fi 17-12	2-2 (1.4571)	; X6CrNiMoTi 17-12-2+ stellite							
		X2CrNiMo	X201NIW011 17-12-2 (1.4404); X201NIW011 17-12-2+STEIIITE X60rNiMoTi 17-12-2 (1.4571); X60rNiMoTi 17-12-2; stallite									
4a.	Metallic seat	X6CrNIMO X2CrNIMO	Ti 17-1: Ti 17-1:	2-2 (1.4571) 2-2 (1.4404)); X6CrNIMoTI 17-12-2+stellite): X2CrNiMoTi 17-12-2+stellite							
4b	Soft seat	X6CrNiMoTi 17-12-2+PTFE;										
	Concernation	X2CrNiMoTi 17-12-2+PTFE										
5.	Screw plug	-	X6CrNiMoTi 17-12-2 (1.4571)									
6.	Shaft											
7.	Guiding sleeve	X6CrNiMoTi 17-12-2 (1.4571)+CrN										
8.	Shaft sealing	X6CrNiMoTi 17-12-2+PTFE										
9.	Packing kit	PTFE-V; PTFE+graphite; GRAPHITE										
10a ,10b	Sealing ring	FKM										
11.	Sweep ring			VI	ИQ							
12.	Disk spring	12R10 (SANDVIK)										
13.	Spacer sleeve											
14.	Lubricating sleeve		X6	CrNiMoTi 17	7-12-2 (1.4571)							
15.	Follower sleeve											
16.	Pressing lever	X6CrNiMoT	i 17-12	-2 (1.4571)	;GX5CrNiMo 19-11-2 (1.4408)							
17.	Cylindrical pin		Ye	CrNiMoTi 17	7-19-9 (1 4571)							
18.	Conical pin		XU		-12-2 (1.4371)							
19.	Stud bolt	8.8			A4-70							
20	Nut	8			A4-70							
		Material rele	/ant stan	ıdard								
	Material			Star	ndard							
G	P240GH (1.0619)			PN-EN	10213-2							
	WCB			ASTM	A 216							
GX5Cr	NiMo19-11-2 (1.4408)			PN-EN	10213-4							
	CF8M	ASTM A 351 PN-EN 10088										
	iMoTi 17-12-2 (1.4571)											
X6CrNi												
X6CrNi X2CrNi	iMoTi 17-12-2 (1.4404)			PN-EN	10088							

${\bf Kv}_{{\bf x}}$ FLOW RATIOS AND PRESSURE DROPS $\ {\bf \Delta p}$

		Actuat	or type			R99-1-R	[120 cm ²]	R99-2-R	[240 cm ²]	R99-3-R [780 cm ²]			
		Spring ra	nge [kPa]			100-200	160-320	80-160	160-320	100-200	160-320		
DN	Kv _s 100%	Kv _s 75%	Kv _s 45%	Kv _s ** 120%	Seat dia. [mm]	Maximum pressure drop [bar]							
25	15	11	7	18	18	50*	-	-	-	-	-		
25	6	5	3	7	12	50*	-	-	-	-	-		
40	40	30	18	48	28,5	50*	-	-	-	-	-		
40	16	12	7	19	20	50*	-	-	-	-	-		
50	60	45	27	72	38	50*	-	-	-	-	-		
50	24	18	11	29	26	50*	-	-	-	-	-		
80	150	113	68	180	58	11	32	50*	50*	-	-		
80	60	45	27	72	38	33	50*	50*	50*	-	-		
100	240	180	108	288	72	2	13	27	50*	-	-		
100	96	72	43	115	48	11	36	50*	50*	-	-		
150	500	375	225	600	110	-	-	9	23	50*	50*		
150	200	150	90	240	72	-	-	25	50*	50*	50*		
200	800	600	360	960	136	-	-	-	13	44	50*		
200	320	240	144	384	88	-	-	-	37	50*	50*		
250	1250	938	563	1500	170	-	-	-	5	20	45		
250	500	375	225	600	110	-	-	-	17	50*	50*		
300	1800	1350	810	2160	200	-	-	-	2	12	28		
300	720	540	324	864	126	-	-	-	10	34	50*		

Table 10. Soft seat (leakage class VI); reverse action actuator (air-to-open)

		Actuat	or type			R99-1-R	[120 cm ²]	R99-2-R	[240 cm ²]	R99-3-R [780 cm ²]				
		Spring ra	nge [kPa]			100-200	160-320	80-160	160-320	100-200	160-320			
DN	Kv _s 100%	Kv _s 75%	Kv _s 45%	Kv _s ** 120%	Seat dia. [mm]	Maximum pressure drop [bar]								
25	15	11	7	18	18	50*	-	-	-	-	-			
25	6	5	3	7	12	50*	-	-	-	-	-			
40	40	30	18	48	28,5	50*	-	-	-	-	-			
40	16	12	7	19	20	50*	-	-	-	-	-			
50	60	45	27	72	38	50*	-	-	-	-	-			
50	24	18	11	29	26	50*	-	-	-	-	-			
80	150	113	68	180	58	14	35	50*	50*	-	-			
80	60	45	27	72	38	38	50*	50*	50*	-	-			
100	240	180	108	288	72	5	16	30	50*	-	-			
100	96	72	43	115	48	15	40	50*	50*	-	-			
150	500	375	225	600	110	-	-	10	25	50*	50*			
150	200	150	90	240	72	-	-	28	50*	50*	50*			
200	800	600	360	960	136	-	-	-	15	38	50*			
200	320	240	144	384	88	-	-	-	39	50*	50*			
250	1250	938	563	1500	170	-	-	-	6	18	39			
250	500	375	225	600	110	-	-	-	19	48	50*			
300	1800	1350	810	2160	200	-	-	-	3	11	25			
300	720	540	324	864	126	-	-	-	11	30	50*			

* - Do not exceed nominal pressure

** - For 120% setting it is recommended that listed pressure drops are reduced

In Tables 9...10, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%. Pressure drops chosen that way guarantee internal tightness of closing of the valves.Calculated ratios:

 $F_{L}=0,854, X_{T}=0,6, F_{D}=0,7, xF_{Z}=0,58$

		Actuat	or type			P99-1-P	[120 cm ²]	P99-2-P	[240 cm ²]	P99-3-P	[780 cm ²]		
	١	/oltage pre	ssure [kPa]		240	400	240	400	240	400		
DN	Kv _s 100%	Kv _s 75%	Kv _s 45%	Kv _s ** 120%	Seat dia. [mm]	Maximum pressure drop [bar]							
25	15	11	7	18	18	50*	50*	-	-	-	-		
25	6	5	3	7	12	50*	50*	-	-	-	-		
40	40	30	18	48	28,5	50*	50*	-	-	-	-		
40	16	12	7	19	20	50*	50*	-	-	-	-		
50	60	45	27	72	38	50*	50*	-	-	-	-		
50	24	18	11	29	26	50*	50*	-	-	-	-		
80	150	113	68	180	58	11	50*	50*	50*	-	-		
80	60	45	27	72	38	33	50*	50*	50*	-	-		
100	240	180	108	288	72	2	24	27	50*	-	-		
100	96	72	43	115	48	11	50*	50*	50*	-	-		
150	500	375	225	600	110	-	-	9	38	50*	50*		
150	200	150	90	240	72	-	-	25	50*	50*	50*		
200	800	600	360	960	136	-	-	-	23	44	50*		
200	320	240	144	384	88	-	-	-	50*	50*	50*		
250	1250	938	563	1500	170	-	-	-	10	20	50*		
250	500	375	225	600	110	-	-	-	29	50*	50*		
300	1800	1350	810	2160	200	-	-	-	5	12	44		
300	720	540	324	864	126	-	-	-	17	34	50*		

Table 11. Metallic seat (leakage class IV); direct action actuator (air-to-close)

Table 12. Soft seat (leakage class VI); direct action actuator (air-to-close)

		Actuat	or type			P99-1-P	[120 cm ²]	P99-2-P	[240 cm ²]	P99-3-P	[780 cm ²]	
	١	/oltage pre	ssure [kPa]		240	400	240	400	240	400	
DN	Kv _s 100%	Kv _s 75%	Kv _s 45%	Kv _s ** 120%	Seat dia. [mm]	Maximum pressure drop [bar]						
25	15	11	7	18	18	50*	50*	-	-	-	-	
25	6	5	3	7	12	50*	50*	-	-	-	-	
40	40	30	18	48	28,5	50*	50*	-	-	-	-	
40	16	12	7	19	20	50*	50*	-	-	-	-	
50	60	45	27	72	38	50*	50*	-	-	-	-	
50	24	18	11	29	26	50*	50*	-	-	-	-	
80	150	113	68	180	58	14	50*	50*	50*	-	-	
80	60	45	27	72	38	38	50*	50*	50*	-	-	
100	240	180	108	288	72	5	27	30	50*	-	-	
100	96	72	43	115	48	15	50*	50*	50*	-	-	
150	500	375	225	600	110	-	-	10	40	50*	50*	
150	200	150	90	240	72	-	-	28	50*	50*	50*	
200	800	600	360	960	136	-	-	-	50*	38	50*	
200	320	240	144	384	88	-	-	-	50*	50*	50*	
250	1250	938	563	1500	170	-	-	-	11	18	50*	
250	500	375	225	600	110	-	-	-	30	48	50*	
300	1800	1350	810	2160	200	-	-	-	6	11	50*	
300	720	540	324	864	126	-	-	-	19	30	50*	

* - Do not exceed nominal pressure

** - For 120% setting it is recommended that listed pressure drops are reduced

In Tables 11...12, theoretical acceptable pressure drops are included. Actual pressure drops with consideration of tolerance of spring manufacture and friction of internal parts of the actuator are lower than those given by 20%. Pressure drops chosen that way guarantee internal tightness of closing of the valves.Calculated ratios:

 $F_{L}=0,854, X_{T}=0,6, F_{D}=0,7, xF_{Z}=0,58$

VALVE DRIVES

Rotary pneumatic valves, diaphragm and spring type P/R - 99, with or without a handwheel - special design to drive Z33 valves.

Table 13. Types of rotary pneumatic acutators .

Size	Diaphragm effective area [cm ²]	Spring range [kPa]	Rotation angle of output element (crankshaft)
P/R 99-1	120	100200, 160320	
P/R 99-2	240	80160, 160320	25º- 45º - 60º - 90º
P/R 99-3	780	100200, 160320	

ACTUATOR CHARACTERISTICS:

- total reversibility of action, allowing change in function from "air-to-close P" to "air-to-open R", with no extra parts,
- ability to mount actuator on valve, in various positions, pivotting with 90° increments,
- option with a handwheel,
- fixed diaphragm effective area, ensuring linear movement to pressure ratio,
- optional NAMUR connections.

DESIGN AND TECHNICAL SPECIFICATION OF ACTUATOR:

Body (21) - among the basic components of actuator, designed to hold and assemble other components; executed in grey or spheroidal iron.

Yoke (28) - connects valve to actuator; executed in grey iron or pressed in steel sheets and welded.

Diaphragm (25) and spring (26) case - make a pressure chamber and springs case; executed as steel die; welded or cast in spheroidal iron.

Diaphragm (31) - executed in acrylic-butadiene rubber (NBR); reinforced with nylon insert.

Diaphragm plate (24) - formed in plastic or cast in aluminum alloy.

Lever (22) - transmits plane motion of membrane unit to rotary movement of crankshaft; executed in spheroidal cast-iron.

Crankshaft (23) - in connection with lever makes an output (driving) element of actuator in the form of rotating pin with key grooves; cast in alloy steel and heat processed.

Spring (29) - executed in construction spring steel; 2 springs for range 160 - 320 kPa.

Bearing pin (27) - connects lever and crankshaft; in special execution (extended) projects from the body and connects actuator to accessories (positioner, limit switches, etc.); executed in alloy steel (stainless steel).

BASIC TECHNICAL SPECIFICATION OF ACTUATOR:

 maximum supply pressure: 	450 kPa				
 control air connection: 	G 1/4"				
 connection pipes diameter: 	Ø6x1 (Ø8x1)				
ambient temperature range:	- 40°C+ 80°C				
 control pressure change tolerance: 					
- with no positioner:	4% of nominal range				
- with positioner:	1.5% of nominal range				
 hysteresis deviation: 					
- with no positioner:	4% of stroke range				
- with positioner:	1% of stroke range				
dead zone:					
- with no positioner:	2% of nominal pressure range				
- with positioner:	1% of nominal pressure range				
 optional accessories (on request): 					
- handwheel,					
- positioner,					
- air set,					
 three-way solenoid valve, 					
 lock-up valve, 					
- limit switches,					
 quick exhaust valve. 					

Rotary plug control valves type Z33

Pneumatic actuators, rotary piston type:

It is possible to apply rotary piston (spring or springless) actuators by any manufacturer, as required. For detailed technical specifications of actuators and completion methods refer to catalog charts.

Electric actuators:

In process installations where no pneumatic actuators can be applied, valves can be driven using electric rotary actuators of various types. For technical specifications refer to separate catalog charts.

SPECIAL EXECUTIONS:

Valve executions as per Fig.3.

OPERATION PRINCIPLE (transformation of plane motion to rotary motion)

EXTERNAL SIZES, END CONNECTION SIZES; WEIGHTS

Table 14. Valve end connection sizes

DN	End connec- tion as per ISO 5211	E	F	G	
2550	F07	83	16	55	
00 100	F10	83	16	95	
00100	FIZ	116	28	G 55 85 100 130	
150	E1 /	113	28	100	
150	Г14	123	36	100	
200 200	E16	133	28	120	
200300	F10	120	36	130	

Table 15. Actuator type 99 end connection sizes

Size	End connection as per ISO 5211	L	К	G ^{+0,5}	F	S	Weight [kg]	
99-1	F07	110	36	55	16	24	18	
001	F12	110	00	85	10	21		
	F12	100		85		60	54	
99-2	F14	100	60	100	28			
	F16	200		130				
00.2	F14	200	60	100	26	71	189	
33-3	F16	200	00	130	30	1		

Table 16. Dimensions of valves with actuators type 99

		1	Ì	<u> </u>		<u> </u>										
DN	Flanges	Actuator	H [mm]	h [mm]	d [mm]	A [mm]	C [mm]	L [mm]	LM [mm]	B [mm]	R [mm]	Q [mm]	V [mm]	T [mm]	Weight 1) [kg]	
25	PN40	99-1	409	134	37	175	55	160	89	274	92	105	90	234	20	
25	CL150	99-1	409	134	37	175	55	184	113	274	92	105	90	234	20	
25	CL300	99-1	409	134	37	175	55	197	126	274	92	105	90	234	21	
25	Sandw.	99-1	409	134	37	175	55	102	60	274	92	105	90	234	18	\rightarrow \rightarrow
40	PN40	99-1	415	140	48	175	64	200	115	274	92	105	90	234	22	
40	CL150	99-1	415	140	48	175	64	222	137	274	92	105	90	234	22	
40	CL300	99-1	415	140	48	175	64	235	150	274	92	105	90	234	23	
40	Sandw.	99-1	415	140	48	175	64	114	64	2/4	92	105	90	234	20	
50	CI 150	00-1	420	145	60	175	70	255	123	274	92	105	90	234	23	
50	CL 300	99-1	420	145	60	175	70	267	141	274	92	105	90	234	25	
50	Sandw.	99-1	420	145	60	175	70	124	70	274	92	105	90	234	22	
80	PN40	99-1	467	192	88	175	90	310	190	274	92	105	90	234	34	
80	PN40	99-2	607	192	88	250	90	310	190	573	135	143	75	348	55	
80	CL150	99-1	467	192	88	175	90	298	178	274	92	105	90	234	34	
80	CL150	99-2	607	192	88	250	90	298	178	573	135	143	75	348	55	1 1 TON Y
80	CL300	99-1	467	192	88	175	90	318	197	274	92	105	90	234	39	
80	CL300	99-2	607	192	88	250	90	318	197	573	135	143	75	348	60	Flanged valve
80	Sandw.	99-1	467	192	88	175	90	165	92	274	92	105	90	234	31	Actuator P/R-99
80	Sandw.	99-2	607	192	88	250	90	165	92	573	135	143	75	348	52	
100	PN40	99-1	477	202	107	175	103	350	215	274	92	105	90	234	55	A A A A A A A A A A A A A A A A A A A
100	PN40	99-2	617	202	107	250	103	350	215	573	135	143	75	348	76	
100	CL150	99-1	477	202	107	175	103	353	223	274	92	105	90	234	55	
100	CL150	99-2	617	202	107	250	103	353	223	573	135	143	75	348	76	
100	CL300	99-1	477	202	107	175	103	368	234	274	92	105	90	234	65	
100	CL300	99-2	617	202	107	250	103	368	234	573	135	143	75	348	86	T C TO C
100	Sandw.	99-1	477	202	107	175	103	194	116	274	92	105	90	234	51	
100	Sandw.	99-2	617	202	107	250	103	194	116	573	135	143	75	348	72	
150	PN40	99-2	699	284	162	250	195	480	270	573	135	143	75	348	100	
150	PN40	99-3	789	284	162	430	195	480	270	925	220	230	90	526	190	" I what was
150	CL 150	99-2	780	204	162	430	195	401	241	025	220	230	70	526	100	
150	CL 300	99-3	600	204	162	250	195	451	241	573	135	143	70	348	114	
150	CL300	99-3	789	284	162	430	195	473	263	925	220	230	70	526	204	Elangeless valve
150	Sandw.	99-2	699	284	162	250	195	229	140	573	135	143	75	348	82	"Sandwich"
150	Sandw.	99-3	789	284	162	430	195	229	140	925	220	230	70	526	172	ActuatorP/R-99
200	PN40	99-2	727	312	204	250	216	600	365	573	135	143	75	348	190	
200	PN40	99-3	817	312	204	430	216	600	365	925	220	230	70	526	280	
200	CL150	99-2	727	312	204	250	216	543	336,5	573	135	143	75	348	180	* * *
200	CL150	99-3	817	312	204	430	216	543	336,5	925	220	230	70	526	270	
200	CL300	99-2	727	312	204	250	216	568	349	573	135	143	75	348	210	
200	CL300	99-3	817	312	204	430	216	568	349	925	220	230	70	526	300	
200	Sandw.	99-2	727	312	204	250	216	243	157	573	135	143	75	348	130	The AL
200	Sandw.	99-3	817	312	204	430	216	243	157	925	220	230	70	526	220	Actuator P/R-99-2
250	PN40	99-2	751	336	250	250	250	730	430	573	135	143	75	348	230	Actuator P/R-99-3
250	PN40	99-3	841	336	250	430	250	730	430	925	220	230	70	526	320	
250	CL150	99-2	751	336	250	250	250	673	401,5	573	135	143	75	348	200	
250	CL150	99-3	841	336	250	430	250	673	401,5	925	220	230	70	526	290	
250	CL300	99-2	751	336	250	250	250	708	421	573	135	143	75	348	230	
250	CL300	99-3	841	336	250	430	250	708	421	925	220	230	70	526	320	
250	Sandw.	99-3	841	336	250	430	250	297	190	925	220	230	70	526	230	
300	PN40	99-2	/69	338	300	250	258	850	553	5/3	135	143	75	348	430	
300	PN40	99-3	859	338	300	430	258	850	107.5	925	220	230	70	240	520	
300	Sandw.	99-2	250	342	300	250	238	328 2)	197,5	073	220	230	70	526	300) - Valve weight (w/o actuators)
000	oundw.	33-3	009	042	300	+30	200	000-)	137,5	323	220	200	10	520	330	- non-compliant with PN-EN

CLASSIFICATION AND MARKING:		- Z33	
Actuator unit			
Type: - pneumatic, rotary, diaphragm-spring, direct action: - pneumatic, rotary, diaphragm-spring, reverse action: - pneumatic, rotary, diaphragm-spring, direct action, with a handwheel: - pneumatic, rotary, diaphragm-spring, reverse action, with a handwheel - pneumatic, piston type: - electric:	:	P99 R99 PN99 RN99 PT E	
Valve unit			
Туре:	Z33		
End connection type: - flanged: - flangeless (sandwich):	FL SD		
Flow characteristics: - linear: - equal percentage:	L P		
Leakage class: - basic: class IV as per PN-EN 60534-4: - blister: class VI as per PN-EN 60534-4:	4	-	

MARKING EXAMPLE:

Control valve type Z33, with actuator type 99, reverse action, with no handwheel, flanged, linear characteristics, basic leakage class:

R99 - Z33 - FL - L - 4

Marking is shown on valve nameplate.

Additional information: nominal size (DN), nominal pressure (PN), max working temperature (TS), max working pressure (PS), test pressure (PT), flow ratio (Kvs), plug stroke fluid group (1), serial number / year of manufacture.

MARKING OF ACTUATOR TYPE 99:

MARKING EXAMPLE:

Pneumatic actuator type 99, diaphragm effective area: 240 cm²; simple action, with handwheel, spring range 80...160 kPa; end connection F12:

ORDERING

PN-99 - 2 - 1 - F12

The order should contain all information as per data questionnaire. Full information can be obtained from the Sales and Marketing Department or Technical Department.

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 I 6 678 66 01 Fax: +48 I 6 678 65 24

www.polna.com.pl

ROTARY PLUG CONTROL VALVES TYPE Z33® WITH ELECTRIC AND PISTON ACTUATORS

APPLICATION AREA:

The rotary plug control valves type Z33 have already been manufactured for coupling with diaphragm-type spring-loaded rotary pneumatic actuators type P/R-99. The presented solutions are intended to expand the offer of acutation to cover rotary pneumatic actuators and electric motors that are available on the market in abundant diversity and used by a number of manufacturers.

FEATURES:

- capable to incorporate alternative drives manufactured with connecting ports to ISO 5211,
- wide series of design types and variations,
- extensive offer of additional equipments and accessories,
- wide range of torque values,
- small dimensions,
- cost effectiveness in relation to technical performances.

TECHNICAL PARAMETERS OF VALVES:

The valve with a rotary plug and a one-piece body, type BR 33. Sizes: DN 25; 40; 50; 80; 100; 150; 200; 250; 300. Pressure ranges and connection ports: PN10...40; CL150; 300 - with flanges CL300 - without flanges (sandwich type). Flow coefficient Kvs: 3...1800. Materials: body: carbon steel GP240GH (1.0619), G20Mn5 (1.6220) stainless steel GX5CiNiMo 19-11-2 (1.4408) interanal parts: X6CrNiMo 17-12-2 (1.4571). Temperature: -40...+250 [°C] (option +450 [°C]).

Please refer to the data sheet "GLOBE VALVES WITH ROTARY PLUG TYPE BR 33" for further information.

ROTARY PISTON PNEUMATIC ACTUATION (AT SERIES):

Design options:

- double action,
- single action (sprig-loaded to return to the initial position).

Maximum torque for individual ports to ISO 5211:

Type:	F 05 - 125 [Nm],
	F 07 - 250 [Nm],

F 12 - 1000	[Nm],
F 14 - 2000	[Nm]
F 16 - 4000	[Nm].

Control pressure: Ambient temperature: Control utilities: Rotation angle: I.
 300 do 800 [kPa].
 -20...+80 [°C] (other temperature ranges upon agreement) purified and dried compressed air, natural gases
 90°

Z33[®] is a trademark registered with Republic of Poland Patent Office.

Permissible pressure drops across the closed valve depend on the following factors:

- available torgue of the actuator,
- nominal diameter of the valve DN,
- orifice seat diameter D,
- type of valve seat closing ("metal" "soft")

According to recommendations of actuator manufacturers the 25% surplus of available torque was adopted.

where:

$$\Delta p = \frac{10 \cdot (0,75M_d - K)}{1000}$$

 Δp [bar]
 - maximum permissible pressure drop across the closed valve,

 M_d [Nm]
 - maximum available torque of the actuator at the border position (valve closed),

 D [mm]
 - internal diameter of the valve seat,

 C
 - coefficient that depends on relation between valve and seat diameters (full or reduced flow), in accordance to Table 2,

 K
 - coefficient that depends on valve diameter and its closing type in accordance to Table 2,

 K
 - coefficient that depends on valve diameter and its closing type in accordance to Table 2,

 K
 - coefficient that depends on valve diameter and its closing type in accordance to Table 2,

 K=K₄ - "metal to metal" closing
 (hard/metal seated valve - leakage class IV to PN-EN 60534-4),

 $K=K_2$ - "metal to PTFE" closing (naturnetal sealed value - leakage class V to PN-EN 60534-4).

Tabel 2 Calculation coefficients Example 1:

DN	2	5	4	0	5	0	8	0	1(00	1	50	2	00	2	50	30	00
D	12	18	20	28,5	26	38	38	58	48	72	72	110	88	136	110	170	126	200
С	0,45	1,03	2,2	4,6	3,9	8,2	11,5	26,9	23,5	52,9	72	169	131	312	253	635	390	980
K ₁ (metal-metal)	0,82	1,23	2,3	2,9	2,9	4,4	6,1	9,2	10,4	14,3	19,6	32	30,1	47,3	48	74,8	62	100
K ₂ (metal-PTFE)	1,23	2,05	3,5	4,6	5,1	7,3	10,2	15,3	16,9	24,7	33,8	52	49,5	77,4	77	123	106	165

What is the pressure drop across the valve Z33, with DN 100, PN40 full flow, soft seated, with the actuator type AP6SR from SIRCA, single-acting, 6 springs on each side of the actuator and closing torque of the actuator 354 Nm?

$$\Delta p = \frac{10 \cdot (0,75 \cdot 354 - 24,7)}{52,9} = 45,5 \text{ [bar]}$$

As the rated (nominal) pressure of the valve is PN 40, the pressure drop should not exceed $\Delta p = 40$ bar.

Example 2:

The same actuator as in Example 1 has the connecting port F12 and can be combined with the valve DN 150. What is the pressured drop across the valve for full flow and soft seated plug powered by the actuator as above?

$$M_d = 354 \text{ Nm}$$
; K = K₂ = 52; C = 169

$$\Delta p = \frac{10 \cdot (0,75 \cdot 354 - 52)}{169} = 12,6 \text{ [bar]}$$

Example 3:

Find out an electric actuator that will guarantee pressure drop $\Delta p = 20$ bar across the valve DN 80, full flow, metal seated poppet, port to connect the actuator is F12 or F07.

$$\Delta p = \frac{10 \cdot (0,75M_d - K)}{C} \rightarrow M_d = \frac{\Delta p \cdot C + 10K}{7,5}$$

where:

 Δp = 20 bar ; C = 26,9 ; K = K_1 = 9,26

$$M_d = \frac{20 \cdot 26,9 + 10 \cdot 9,2}{7,5} = 84 \text{ Nm}$$

Thus, the actuator ISOMACT SP 2 with torque of 125 Nm and the F07 connecting port to ISO 5211 was selected.

ORDER PLACEMENT:

Orders must contain all the information that is required to calculate valve parameters based on the technical data questionnaire. Please do not hesitate to ask the officers from the Marketing and Sales Department as well as the Technical Department for assistance to choose valves that suit your needs.

DOUBLE-PORTED CONTROL GLOBE VALVES TYPE Z®10

APPLICATION AREA:

The valves type Z10 with pressure balanced plug are used as final flow control units for automatic and remote control systems. They can be applied to adjust flow of fluids in various industries, such as chemical plants, steelworks, shipyards, etc. The offer includes valves with or without driving units, where pneumatic actuators with spring membranes, production of POLNA are used as standard driving appliances.

CONSTRUCTION:

The valves units incorporate the following major components:

Body (1):

Flanges with plain mating surfaces, with a groove or a tongue to: PN-H-74306:1985, PN-H-74307:1985, ISO 2084-1974, ISO 2441-1975, as well as with the RF plain flange or with the RTJ groove to ANSI B16.10-1986, for welding to PN 160.

Nominal diameters:

20; 25; 32; 40; 50; 65; 80; 100; 150; 200; 250; 300.

Nominal pressures: 16; 25; 40; 63; 100; 160 or CL150; CL300; CL600.

In case of possible solidification of the flowing fluid or crystalline precipitation, which may lead to jamming the valve plug, the cast steel body can be fitted with a heat jacket, made from piping or die-pressed sheets that are joint together by welding.

The valve bodies with heating jackets are manufactured for valves:

- DN20...40 i DN150...200 for the rated pressures PN 16...40,
- DN50...100 for the rated pressures PN16...100.

The valves employ steam or hot oil with working temperature < 200°C.

- The following flange sized are used to connect the appliance to heating pipelines:
- DN15 PN16 acc. to PN-H-74731:1987 for DN20...80,
- DN25 PN16 acc. to PN-H-74731:1987 for DN100...200.

- for the fluid temperature

Standard bonnet (2) - is made of the same material as the valve body and can be of the following design options:

- standard - for the fluid temperature

– finned AB

- -20...+260°C,
- +260...+650°C, -180...-20°C.
- extended EB
 for the fluid temperature

bellow-type DM - for the fluid temperature up to +300°C for the valves DN 20 ... 100 with rated pressure PN16 ... 25 as well as for the valves DN150 with rated pressure PN16.

Bellow-type bonnets are used for toxic, explosive and flammable agents.

- PTFE braided,
- PTFE V-shaped rings,
- graphite braided,
- balanced graphite rings

Table 1. Type and options for bonnet sealing.

Type and options of sealing	Maximum allow	vable pressure	Fluid temperature [°C]				
	fluid and gases	steam	standard	finned	extended		
PTFE – braided		25	20 260	260 350			
PTFE – V-shaped rings	160	20	-20200	200550	190 20		
graphite – braided	100	160	260 350	350 650	-10020		
balanced graphite – rings		100	200300	550050			

To select type of sealing it is necessary to take account for character of the handled fluid, its temperature and working pressure.

Plug (4) and Seat (5)

Are made of stainless steel. X6CrNiMoTi 17-12-2 (1.4571) or stainless steel X17CrNi 16-2 (1.4057) heat processed.

When handing fluids with abrasive properties the hardfacing techniques can be applied, e.g.: Within the technology of hardening internal elements of valves, the following are used:

a) stelliting of mating surfaces: ~ 40HRC (plugs and valve seats for the full range of valve diameters DN 20...300, stelliting the entire contour of plugs and seats for the valves DN 20...100),

b) CrN coating – inserting chromium nitride into the external layer of a detail at the depth of approx. 0.1mm; ~950HV

c) heat processing: plug (~45HRC), seat (~35HRC), stem (~35HRC), sleeve (~45HRC)

Seats with soft inserts (PTFE), only made of acid resistant steel, with retention of the maximum pressure drop to 35 bar and working temperature (-180°C...+180°C).

The following kinds of plugs are manufactured:

- profile,
- perforated.

Depending on the desired characteristic curve the following plug types are used:

- equal percentage, contoured,
- quick opening, poppet type for on/off control,
- linear, contoured.

Leakage class of the valve

- below 0.5% K_{vs} (II class to PN-EN 60534-4) – for hard plugs - bubble tightness (VI class to PN-EN 60534-4) – for plugs with soft

sealing

Table 2. Types of plugs and valves function

		The valve function is obtained by means of linear drive					
		rise of the control air pressure (pneumatic signal)					
Plug type and characteristic curve	Plug symbol	• • • •	↑ • ↓ • • ↓ •				
Equal percentage	Р						
Quick opening	S	opens valve	closes valve				
Linear	L						

Hard plugs are manufactured for full passage via the valve seat as well as for volumetric flow reduced to 40% of the rated valve capacity and for flow coefficients as per Table 3.

Nominal		Full	flow	Reduced flow 0.4			
diameter	Stroke		Plug flow c	haracteristic			
	[mm]	linear (L)	quick opening (S)	linear (L)	quick opening (S)		
DI		equal percentage (P)	quick opening (3)	equal percentage (P)			
20	12,7	6,8	8,6	4	5		
25	12,7	10,3	12,8	4	5		
32	19,1	15,4	20,5	6	8,2		
40	19,1	24	28,3	9,4	11,3		
50	25,4	41	51,4	16,3	20,5		
65	25,4	62	77	25	31		
80	38,1	94	120	37,6	48		
100	38,1	167	215	67	86		
150	50,8	385	464	154	185		
200	63,5	640	840	256	336		
250	63,5	1000	1330	395	532		
300	88,9	1390	1930	560	772		

Valve stem (6) - made of stainless steel, X6CrNiMoTi 17-12-2 (1.4571) or X17CrNi 16-2 (1.4057) heat processed. Enables sturdy connection of the valve plug with the actuator shaft.

Draining plug (7) - is made of the same material as the valve body. Beside its principal function, which consists in sealing the bottom part of the valve body and guiding the valve plug, it can also be used for easy draining of dirt that is trapped in the valve sump during valve operation, with no need do dismantle the bonnet and actuator.

Table 1	Dimensione	of the velve	with a hea	ting indicat	waight of ha	atime in alcate
Table 4.	Dimensions	or the valve	e wiin a nea	ппо гаскег –	weldni ol ne	aling lackels

Nominal diameter DN	А	G	К	L	Weight of the heating jacket
		[mm]			[kg]
20	230	115	33	258	3,5
25	230	115	33	258	3,5
32	260	130	39	258	3,5
40	260	125	55	277	4,5
50	300	145	54	299	6,0
65	340	158	64	316	7,5
80	380	180	78	343	9,0
100	430	200	100	408	15,0
150	550	245	153	503	37,0
200	600	270	198	550	48,0

OVERALL DIMENSIONS, CONNECTIONS AND WEIGHT OF VALVES

Neurinel	Newsinel			Bo	dy					d			Bonnet		
diameter	pressure	flan	iged		for we	elding		В	d,	Maximum accontable stam	d,	std.	AB;EB	DM	Weight
DN	PN	A	G	A	G	D ₀	D			load [kN]	5		С		
[mm]	[bar]				[1	mm]				[in]			[mm]		[kg]
20	10 - 16 25 - 40 63 - 160	150 150 230	72 72 115	- - -	- - -	- - -	- -	108				245	355	445 445 —	7,0 7,5 8,0
25	10 - 16 25 - 40 63 - 160	160 160 230	77 77 115	- 230	- - 115	- - 36	- - 26	100		5/16"-24UNF3A		245	355	445 445 —	7,5 8,0 8,5
32	10 - 16 25 - 40 63 - 160	180 180 260	87 87 130	- - 260	- 130	- - 44	- - 32	115		[4 kN]		260	370	505 505 —	10,5 11,0 12,0
40	10 - 16 25 - 40 63 - 100 160	200 200 260 260	95 95 125 125	- - 260	- - 125	- - 52	- - - 38	120 120 130 130				275 275 275 295	390 390 390 400	475 475 —	16,0 16,5 17,0 20,0
50	10 - 16 25 - 40 63 - 100 160	230 230 300 300	110 110 145 145	- - 300	- - 145	- - - 67	- - 51	145 145 145 165	57,15	3/8"-24UNF3A	2 1/4"-16UN2A	315 315 315 355	430 430 430 475	590 590 —	23,0 24,0 25,0 30,5
65	10 - 16 25 - 40 63 - 100 160	290 290 340 340	135 135 158 158	- - 340	- - 158	- - - 84	- - - 64	160 160 160 195		[6,3 kN]		355 355 355 415	460 460 460 535	615 615 —	30,0 31,0 31,5 40,0
80	10 - 16 25 - 40 63 - 100 160	310 310 380 380	145 145 180 180	- - 380	- - 180	- - 100	- - - 76	195 195 195 205		1/2"-20UNF3A		430 430 430 450	525 525 525 540	760 760 	36,0 37,0 38,0 60,5
100	10 - 16 25 - 40 63 - 100 160	350 350 430 430	165 165 200 200	- - 430	- - 200	- - 130	- - 102	205 205 205 240		[10 kN]		445 445 445 515	555 555 555 630	780 780 —	63,0 64,0 65,5 85,0
150	10 - 16 25 - 40 63 - 100 160	480 480 550 550	210 210 245 245	- - 550	- - 245	- - 192	- - 152	280 280 280 290		5/8"-18UNF3A [16 kN]		595 595 595 700	735 735 735 820	905 	137 138 140 170
200	10 - 16 25 - 40 63 - 100 160	600 600 650 650	270 270 295 295	- - - 650	- - 295	- - 253	- - 203	335 335 335 355	84,15		3 5/16"-16NS2A	705 705 705 790	840 840 840 970		201 204 209 252
250	10 - 16 25 - 40 63 - 100 160	730 730 775 775	331 331 350 350	- - - 775	- - 350	- - 318	- - 254	375 375 375 405		3/4"-16UNF3A [25 kN]		785 785 785 965	885 885 885 1085		350 355 365 425
300	10 - 16 25 - 40 63 - 100 160	850 850 900 900	346 346 375 375	- - 900	- - 375	- - 336	- - 264	450 450 450 525	95,25		3 3/4"-12UN2A	960 960 960 1175	1140 1140 1140 1340		530 535 545 640
						N	ote: V	alve we	eight wit	hout actuator, with a standard	bonnet				

Table 5. Dimensions and weight of valves

MARKING EXAMPLE:

Control valve type Z10 with pneumatic actuator reverse action with top mounted handweel, extension bonnet, packing: graphite: expanded, leakage class VI with equal percentage plug, body material carbon steel:

RN-Z10-2E680P3

Marking is shown on valve nameplate.

Additionaly, it shows:

- nominal size [DN],
- nominal pressure [PN],
- max working temperature [TS],
- max working pressure [PS],
- test pressure [PT],
- flow ratio [Kvs],
- plug stroke [H],
- plug stroke fluid group [1 or 2],
- serial number and year of manufacture.

OTHER ACTUATORS:

- 1. Pneumatic actuators type P/R or P1/R1 POLNA S.A production.
- 2. The handwheel type 20 from Zakłady Automatyki POLNA S.A.
- 3. Other electric or electro-hydraulic actuators
- Selection of linear drives should be agreed on with Zakłady Automatyki "POLNA" S.A.

Detailed information and technical data of actuators – according to separate catalogue sheets.

For detailed information and technical parameters of specific actuators please refer to relevant datasheets.

ORDERING:

Orders must contain complete information that is necessary to calculate parameters of the valve in accordance with the technical data questionnaire. To find out the most suitable valves please refer to the staff of the Marketing and Sales Departments and Technical Department for assistance.

SINGLE-PORTED GLOBE CONTROL VALVES TYPE TYP Z®H

APPLICATION AREA:

These valves are used as flow control valves for automatic and remote control systems, for stepless, infinite or ON/OFF flow control in water or steam heating systems as well as for ventilation and air conditioning circuits (HVAC).

These valves can be combined with actuators manufactured by Honeywell or Controlmatica.

FEATURES:

- range of nominal diameters from DN15 to DN100 for rated pressured from PN10 to CL300,
- variety of materials and designs of the valve bodies and internal parts makes it possible to select the most appropriate valve for specific operating conditions,
- wide range of flow coefficients and characteristic curves for flow control,
- easy dismantling and disassembling of the valve internal components for inspection and maintenance,
- high durability and reliability of operation due to usage of top quality materials and techniques for surface treatment (burnishing, stelliting, heat treatment, CrN coatings),
- combining with electric actuators from Honeywell, types: ML 6420A; ML 6425A,B; ML 7420A; ML 7425A,B; M 6421A,B M 7421A,B or Controlmatica type ESL-16,
- high tightness of closure due to application of soft seats (with PTFE sealing for the full range of flow parameters and characteristic curves,
- the same flow coefficients and flow control characteristic curves for both "hard" seats (metal-metal) and "soft" seats (metal-sealing ring), as well as for unbalanced and balanced plugs,
- low values of excessive control forces owing to application of balanced plugs for DN25...100 valves,
- reliable connections between actuator rods and valve stems as well as between valve seats and bodies,
- high quality of flat sealing and gland packing,
- competitive prices as a result of simple design and high performance of the offered valves and actuators as well as careful selection of applied materials,
- design and manufacturing procedures conform to requirements of the Quality Assurance System to ISO 9001 as well as Directives 97/23/EC and codes AD2000 Merkblatt as applicable to installation on pipelines.

DESIGN AND TECHNICAL PARAMETERS:

- Operation principle: down movement of the valve stem results in valve closing.
- Nominal sizes: DN15; 20; 25; 32; 40; 50; 65; 80; 100
- Codes for rated pressure: PN10; 16; 25; 40 (to PN-EN 1092-1:2010 and PN-EN 1092-2:1999); CL150; CL300 (to PN-EN 1759-1:2005).
- Installation length (body): to PN-EN 60534-3-1; 2000r. series 1 for PN10; 16; 25; 40; series 37 to CL150; series 38 for CL300

 $Z^{(R)}$ - the product trademark, registered in the Patent Office of Poland

Body: flanged, material: cast iron to EN-GJL 250 (EN-JL 1040); EN-GJS 400-18 LT (EN-JS 1025) or cast steel (GP 240 GH (1.0619); GX5CrNiMo 19-11-2 (1.4408)). Maximum excessive pressure for the used materials at respective temperatures are listed in the data sheet for the $_{x}Z^{@}$ type flow control valves.

Gland: non-cast, attached to the valve body by means of the intermediate connecting plate.

Plug: purposefully shaped, unbalanced or balanced, material: acid resistant (stainless) steel or steel for quenching, rangeability 50:1.

Characteristic curves for flow control: linear (L), equal percentage (P) and quick-opening (S)

Seat: screwed-in with a centering cone for sealing and protection against unintentional unscrewing. The seat can be either hard (metal) or soft (with PTFE sealing). Leakage class: - basic: IV class to PN-EN 60534-4 - hard seat

Leakage class:	- basic:	IV class to PN-EN 60534-4	- hard seat
-	- for bubbles:	VI class to PN-EN 60534-4	 soft seat
Stem: burnished or	heat treated and polish	ned on sealing-mating surfaces.	

Plug: steel or acid resistant, enables draining/purging of the body interior (delivered upon separate order). **Sealing:** asbestos-free: flat sealing: aramide and graphite, with strengthened graphite fibres in metal enclosures (1.4571); gland packing: the sealing package PFTE-V with a loading spring.

Maximum temperature of handled utilities: 260°C (PTFE).

PERMISSIBLE PRESSURE DROPS *Ap.*

The permissible pressure drops Δp [bar] refer to closed valves and are calculated with regard to capacities of valve drives and possible inflow of the handled utilities under the valve plug. Actual pressure drops should not extend 70% of the maximum allowed working pressure for the specific rated pressure, used materials and working temperature.

Table 1. Maximum permissible pressure drops Δp [bar].

	Force					Kvs [m 3/ h]				
Actuator	[N]	do 4	6,3	10	16	25	40	63	94	125; 160
			Pres	sure unbalan	iced valves (T	「 / PTFE)				
ML 6420A; ML 6425A,B ML 7420A; ML 7425A,B ESL-16-00; ESL-16-01	600	30 / 23	10/3	9/-	4 / -	1,2/-	-	-	-	-
ESL-16-06; ESL-16-07	1000	40 / 35	24 / 17	20 / 15	12/8	6 / 2,5	2 / -			
M 6421A,B; M 7421A,B	1800	40 / 35	40 / 35	40 / 35	28 / 22	16 / 12	8 / 5	5 / 2	2/1	-
			Pre	essure balanc	ed valves (T	/ PTFE)				
ML 6420A; ML 6425A,B ML 7420A; ML 7425A,B ESL-16-00; ESL-16-01	600	-	-	40 / 35	40 / -	40 / -	-	-	-	-
ESL-16-06; ESL-16-07	1000	-	-	40 / 35	40 / 35	40 / 35	40 / -			
M 6421A,B; M 7421A,B	1800	-	-	40 / 35	40 / 35	40 / 35	40 / 35	40 / 35	40 / 35	40 / -
			T - hard	(metal) seat;	PTFE - soft	(sealed) seat				

Tablica 2. Siutable actuators.

	Actuator	Force [N]	Power voltage	Ret spr	urn ing	Stroke [mm]	Control signal	Protection class		
	ML 6420A		24V AC or	-	-		2 noint			
	ML 6425A		230V AC	А	-		control			
	ML 6425A	600		-	В	00		IP 54		
VELL	ML 7420A		24V AC	-	-	20	010V DC			
NEYV	ML 7425A,B			А	В		DC			
HC	M 6421A		24V AC or	-	-		3-point			
	M 6421B	1000	230V AC	-	-	38	control			
	M 7421A	1000	241/ 4.0	-	-	20	010V DC			
	M 7421B		24V AU	-	-	38	DC			
	Action of the return spring: A – closes the valve: B – opens the valve									

Please refer to homepages of the relevant manufacturers for more detailed information about the devices:

HONEYWELL

www.honeywell.com.pl

CONTROLMATICA www.controlmatica.com.pl.

n		Actuator	Force [N]	Power voltage	Control signal	Changeover time [s]	Protection class
"		ESL-16-00-00-01-1-1-01			3-point w/out position transducer		
		ESL-16-00-00-01-2-1-01		24V AC	3-point, with transducer 4-20 mA		
		ESL-16-00-00-01-3-1-01			0(2)10V DC; 0(4)20mA DC	100	
		ESL-16-00-00-01-1-1-02			3-point w/out position transducer	100	
		ESL-16-00-00-01-2-1-02		230V	3-point, with transducer 4-20 mA		
		ESL-16-00-00-01-3-1-02	c00		0(2)10V DC; 0(4)20mA DC		
		ESL-16-01-00-01-1-1-01	600		3-point w/out position transducer		
		ESL-16-01-00-01-2-1-01		24V AC	3-point, with transducer 4-20 mA		
		ESL-16-01-00-01-3-1-01			0(2)10V DC; 0(4)20mA DC	<u> </u>	
	ICA	ESL-16-01-00-01-1-1-02			3-point w/out position transducer	60	
	MAT	ESL-16-01-00-01-2-1-02		2300	3-point, with transducer 4-20 mA		
	30L	ESL-16-01-00-01-3-1-02			0(2)10V DC; 0(4)20mA DC		
	ITI	ESL-16-06-00-01-1-1-01			3-point w/out position transducer		IP 34
	ö	ESL-16-06-00-01-2-1-01		24V AC	3-point, with transducer 4-20 mA		
		ESL-16-06-00-01-3-1-01			0(2)10V DC; 0(4)20mA DC	100	
		ESL-16-06-00-01-1-1-02		0001/	3-point w/out position transducer	100	
		ESL-16-06-00-01-2-1-02		230V AC	3-point, with transducer 4-20 mA		
		ESL-16-06-00-01-3-1-02	1000		0(2)10V DC; 0(4)20mA DC		
		ESL-16-07-00-01-1-1-01	1000		3-point w/out position transducer		
		ESL-16-07-00-01-2-1-01		24V AC	3-point, with transducer 4-20 mA		
		ESL-16-07-00-01-3-1-01			0(2)10V DC; 0(4)20mA DC	60	
		ESL-16-07-00-01-1-1-02		0001/	3-point w/out position transducer	00	
		ESL-16-07-00-01-2-1-02		AC	3-point, with transducer 4-20 mA		
		ESL-16-07-00-01-3-1-02			0(2)10V DC: 0(4)20mA DC		

Table 3. Flo	ow coeffici	ients Kvs [m³/h] - fo	or unb	alance	ed plu	gs							
1/1/2 [ma3/h]	Stroke	Coot diameter [mm]			No	minal di	ameter	DN			Char	acteristic	curve
KVS [m³/n]	[mm]	Seat diameter [mm]	15	20	25	32	40	50	65	80	L	Р	S
$\begin{array}{c} 0,010\\ 0,016\\ 0,025\\ 0,040\\ 0,063\\ 0,10\\ 0,16\\ 0,25\\ 0,40\\ 0,63\\ 1,0\\ 1,6\\ 2,5\\ 4,0\\ \end{array}$	20	6,35 <u>9,52</u> 12,7											
6,3		19,05											
10		20,64							-	-			
16	38	25,25											
25	20 38	31,72											
40	20	41,25							_				
63	38	50,8											
94]	66,7	ĺ										
		Calculation coefficients	s: F _L =	0,9 ;	X _T = 0,	72 ;	Fd = 0,	46 ;	xFz = 0	,65			
Table 4. Flo	ow coeffic	ients Kvs [m³/h] - fo	or bala	inced	plugs								
Kys [m ³ /h]	Stroke	Seat diameter [mm]					Chara	Characteristic curve					
	[mm]		25	32	40	50		5	80	100	L	P	S
10 16 25	20	20,64 25,25 31,72											

DIMENSIONS:

Table 5: Basic dimensions of the valves.

		А		В	С	E
DN	CL150	CL300 PN1040		[mm]	[mm]	[mm]
15	184	190	130			
20	184	194	150	92		89
25	184	197	160		34,8	
32	200	213	180	110		
40	222	235	200	110		
50	254	267	230	113		
65	276	292	290	176		
80	298	317	310	170	47,6	133
100	352	368	350	182		
	Dimens	sion E - f	or seat plac	ed - val	ve clos	е

<u>Note:</u> The "A" values for the installation length of CL150 and CL300 valves refer to the devices with flanges of B or RF types. For other designs of valve bodies the installation length "A1" must be calculated with formulas provided in Table 6. Piping designs and assembly procedures must take account for dimensions of the actuator and necessary free space for installation. Please refer to datasheets for specific actuators as well as to the datasheet "Single-ported globe control valves, type Z" for more information.

Table 6.

Padu	Mai	king		
Войу	PN	ANSI	A 1	
Groove CL300	D1	GF	A A . E . O	
Recess CL300	F1	FF	$A_{1} = A + 5 \times 2$	
Ring-joint CL300 DN15			A ₁ = A + 5,5 x 2	
Ring-joint CL150] ,	ודס	A A . 65 x 2	
Ring-joint CL300 DN2040]		$A_{1} = A + 0.5 \times 2$	
Ring-joint CL300 DN50250			A 1= A + 8 x 2	

- plug stroke [H] and group of fluids [1 or 2],
- serial number and year of manufacturing.

ORDER PLACEMENT:

Orders must contain all the information that is required to calculate valve parameters based on the technical data questionnaire. Please do not hesitate to ask the officers from the Marketing and Sales Department as well as the Technical Department for assistance to choose valves that suit your needs.

- stainless steel

- other

5

Х

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

BUTTERFLY VALVES TYPE PRS

APPLICATION AREA:

The tight butterfly valves type PRS are used as flow control units in the automatic and remote control systems to adjust flow intensity of liquids and gases. Due to high leakage class they are preferred as devices that cut off flow of utilities. Besides, they can be used as flow control throttling valves with throttling disc angle 25 ... 75°. Versatility of construction designs and used materials makes it possible to use butterfly valves in a number industrial sectors, such as chemical factories, paper mills, food processing plants, thermal and electric power engineering, steelworks, mining industry, etc.

FEATURES:

- absolute leakage class at pressure drops to 20 bar,
- design of the butterfly valve enable installation on flanged connections of pipelines constructed to ISO, DIN, PN and ANSI standards,
- seat reinforced by aluminium frame makes it possible to reach rated pressure values up to PN20 (CL150),
- diversity of materials for seats enables selection of butterfly valves throttling disks that best suit the handled liquids,
- self-lubricated guiding bushes for the throttling disk rod,
- wide range of flow coefficients,
- various types of drive manual operated levers and gearboxes, pneumatic and electric drives.

CONSTRUCTION:

Body - spheroidal iron with two design options:

- without flanges, to install between pipeline flanges: PRS-1
- with tapped stubs to mount separately with every pipeline flange: PRS-2

Butterfly disk - spheroidal iron of spherical shape around all the perimeter that ensures perfect tightness of the disk and reduces wear of packing rings.

Packing ring - a rubber ring with the aluminium reinforcing frame to ensure tightness between the pipe and the throttling disk with an actuating rod. The ring can be made of EPDM, BUNA-N, NEOPREN, VITON or SILICON and others materials corresponding to operating conditions or client's demands – see application guidelines in Table 5.

Shaft - two-piece shaft, made of corrosion resistant steel. *Guiding bushes* - steel, with self-lubrication coating.
TECHNICAL PARAMETERS

Table 1. Flow coefficient Kv [m³/h]

[DN	40	50	65	80	100	125	150	200	250	300
	25°	2,6	5,2	8,6	13	23	50	83	142	220	319
	30°	4,3	7,8	13	20	35	74	121	211	327	465
ng disc angle	40°	9,5	15,5	23	33,6	61	129	211	353	560	819
	50°	15,5	24	38 56 9		99	211	345	590	974	1353
	60°	22,5	47,5	73	112	198	414	677	1099	1810	2629
hrottli	70°	38,8	62	94,8	142	259	526	871	1478	2327	3405
Ŧ	75°	47,5	79,3	116,4	181	336	702	1138	1858	3017	4224
	80°	60,4	95	142	215,5	400	845	1392	2302	3664	5129
	90°	69	116,4	181	267	465	948	1646	2746	4224	6336

Fig. 1 Rrelation between the flow coeffcient kv=Kv/Kvs and the rotation angle of the butterfly disk

Table 2. Required	values of ava	ailable torque	of drives [Nm]
-------------------	---------------	----------------	----------------

DN	40	50	65	80	100	125	150	200	250	300
PN6	9	11	13	17	24	38	62	75	125	190
PN10	11	15	19	20	37	67	107	150	215	290
PN16	17	19	29	31	55	99	136	230	320	435
PN20 (CL150)	20	30	41	49	84	138	205	350	480	640

The above values for torque refer to application of the butterfly valve to control flow of fluids. In case of non-lubricating utilities, such as air, gases, solid bulks (dust, cement, etc) these figures must be increased by 50%. Manufacturing of the valve sized to PN25 must be agreed with the manufacturer.

Tabl	e 3. E	Dimen	sions	and v	weigh	ts of t	he PF	RS-1 k	outter	fly val	ves							
DN	A	В	С	D,	D.	d,	d,	Е	F	G	Н	J	□к	L	L.	N	Flange *	Weight
				1	2	- 1	- 2					-			1		type	[kg]
40	74	105	34	46,5	67	8,5	17	90	55	92	15	4	14	21	16	70		2,3
50	83	115	43	56,5	80	8,5	17	90	55	103	15	4	14	21	16	70		2,7
65	95	130	46	66,5	92	8,5	17	90	55	121	15	4	14	21	16	70		3,2
80	109	135	46	78,5	108	8,5	17	90	55	134	15	4	14	21	16	70		3,8
100	120	150	52	102	134	8,5	17	90	55	162	15	4	14	21	16	70		5,4
125	136	175	56	128	161	8,5	21	90	55	192	15	4	17	22	17	70		7,2
150	152	190	56	153	190	8,5	21	90	55	218	15	4	17	22	17	70		8,9
200	176	225	60	198	242	8,5	21	90	55	273	18	4	17	22	17	70		10,4
250	218	270	68	247	294	11	28	125	70	328	18	4	22	27,5	22,5	102	E10	22
300	257	300	78	299	345	11	28	125	70	378	18	4	22	27,5	22,5	102		33

D1

internal diameter of the packing ring
external diameter o the packing ring D2

- to ISO 5211 *) Ċ

- installation length to ISO 5752-1982 (short) Table 5 / DIN 3202 - K1

Table 4. Dimensions	and weights of the	PRS-2 butterfly valves
---------------------	--------------------	------------------------

DN		PN6		PN10			PN16			PN20		CL150			Weight	
DN	D	d	n	D	d	n	D	d	n	D	d	n	D	d	n	[kg]
40	100			110			110			98,5	M14	3 ⁷ / ₈ "	1/2"		3	
50	110	M12	4	125		4	125		4	120,5		4	4 ³ / ₄ "		4 -	4
65	130		4	145	MIG	4	145	145 160 180 210		139,5	MIG		5 ¹ / ₂ "	E /0"		4,8
80	150			160			160			152,5	IVITO		6 ¹ / ₁₆ "	0/0		5,4
100	170		4*	180			180		8	190,5			7 ¹ / ₂ "			8
125	200	MIC		210		0	210			216	M20	0	8 ¹ / ₂ "			11,5
150	225	IVIIO	8	240		0	240	MOO		241,5		Ö	9 ¹ / ₂ "	3/4"		14
200	280			295			295			298,5	5		11 ³ / ₄ "			19,5
250	335		10	350	350 M20	10	355	M22	12	362	- M24	M24 12	14 ¹ / ₄ "	7/0"		29,4
300	395	M20	12	400		12	410			432			17"	1/8	12	45

D - pitch diameter

d - thread diameter

n - number of holes

NOTE:

d thread for CL150 - type UNC

* - the butterfly valve for oils has 8 holes

Other dimensions - see Table 3.

Components of the butterfly valve:

- 1 body
- 2 packing ring
- 3 disk
- 4 driving rod
- 5 rod
- 6 drain plug
- 7 guiding bushes
- 8 sealing ring (o-ring)
- 9 sealing ring (o-ring)
- 10 seal
- 11 washer
- 12 fixing sprig ring
- 13 washer

Fig. 3 Structure of the butterfly valve - exploded view

Table 5. Material for packing rings - application guidelines

Symbol	Application temperature [°C]	Recommended for utilities	Prohibited for utilities
EPDM	-35+110	water, water steam, seawater, saline,	hudrooorbono oilo fattu oilo
EPDM - HT	-35+150	ketones, alkalis, diluted acids	
NBR(Buna N)	-18+90	seawater, hydrocarbons, natural gas, oils, fatty oils, air	diluted acids, bezene, solvents
NR (natural rubber)	-35+65	non-aggressive abrasive products	water steam, solvents, acids, hydrocarbons
VMQ(silikone)	-35+150	eatable products	acids, water steam, hydrocarbons
FKM(Viton)	-10+160	acids, oils, hydrocarbons, mineral spirit	water steam, freon, alkalis, ketones, solvents
CR(Neopren)	-18+90	acids, oils, hydrocarbons, natural spirit	water steam, acids, ketones
CSM(Hypalon)	-18+100	acids, organic acids, oils, fatty oils	nitric acid, water steam, ketones

Table 6. Mounting dimensions										
DN	R	Р	S							
40	47	51	32							
50	57	64	45,5							
65	72	79	48							
80	84	92	64							
100	104	112	88							
125	130	136	116							
150	157	165	142,5							
200	205	212	189							
250	254	264	238							
300 304 315 289										
NOTE: The T size must be between the values of S and P										

DRIVES

Various types of drive manual operated levers and gearboxes, pneumatic and electric drives.

Fig. 6. The PRS butterfly valve with a piston-type pneumatic actuator

Butterfly valves type PRS

COMBINING BUTTERFLY VALVES WITH ELECTRIC MOTORS

- power supply: 3 phases 230/400 V, 50 Hz, 1 phase 230 V, 50 Hz or 24V DC
- rated load factor 30%
- insulation class F
- protection class IP67
- ambient temperature -30°C +75°C
- electric limit switches
- manual override
- position indicators

Fig. 7. The PRS butterfly valve with the BERNARD electric motor

DN A		B	C	п	F	G	н			м	Motor	Closing	Power	Weigh	nt [kg]	
DN			0			u		0			type	time	[kW]	PRS-1	PRS-2	
40	290	90	200	60	106	215	215	98	74	34				8	8,5	
50	290	90	200	60	106	215	215	109	82	43		6	6	0.03	9	9,5
65	290	90	200	60	106	215	215	122	95	46				0,03	9,6	10,6
80	290	90	200	60	106	215	215	132	109	46						10
100	290	90	200	60	106	215	215	153	120	52	0A-8		0,10	12	14	
125	372	90	200	100	106	215	223	177	136	56	04.15	15:05		15	17,5	
150	372	112	260	100	106	215	223	194	152	56	UA-15	15,25	0,03	16	18,6	
200	527	187	260	165	139	315	177	225	176	60	ASP-25	30;60		28	33	
250	527	187	260	250	139	315	177	275	218	68	AS 50	20	0.10	36,5	45,5	
300	527	187	260	250	139	315	177	297	257	78	AS-50	AS-50	- 30	0,10	48	58,5

* - other types of electric motors on request

Fig. 8 Installation of the butterfly valve on a pipeline

Table 9. Sizing of connecting bolts or PRS-1 butterfly valves

	PN6	6	PN10		PN1	6	PN2	0	CL150	
DN	Bolt size	Bolt q-ty	Bolt size	Bolt q-ty						
40	M12x100	4	M16x110	4	M16x110	4	M14x110	4	1/2" x 4 ⁵ / ₁₆ "	4
50	M12x120	4	M16x130	4	M16x130	4	M16x130	4	5/8" x 5 ¹ / ₈ "	4
65	M12x120	4	M16x130	4	M16x130	4	M16x130	4	5/8" x 5 ¹ / ₈ "	4
80	M16x130	4	M16x140	4	M16x140	8	M16x140	4	5/8" x 5 ¹ / ₂ "	4
100	M16x140	4*	M16x150	8	M16x150	8	M16x140	8	5/8" x 5 ¹ / ₂ "	8
125	M16x150	8	M16x150	8	M16x150	8	M20x160	8	3/4" x 6 ³ / ₈ "	8
150	M16x150	8	M20x160	8	M20x160	8	M20x160	8	3/4" x 6 ³ / ₈ "	8
200	M16x160	8	M20x170	8	M20x170	12	M20x170	8	3/4" x 6 ³ / ₄ "	8
250	M16x180	12	M20x180	12	M22x190	12	M24x190	12	7/8" x 7 ¹ / ₂ "	12
300	M20x190	12	M20x190	12	M22x200	12	M24x210	12	7/8" x 8 ³ / ₈ "	12

* - 8 bolts are used for butterfly valves for oils

Tabel 10. Sizing of connecting bolts or PRS-2 butterfly valves

	PN6	5	PN10		PN1	6	PN2	0	CL150	
DN	Bolt size	Bolt q-ty	Bolt size	Bolt q-ty						
40	M12x25	8	M16x30	8	M16x30	8	M14x30	8	1/2" x 1 ³ / ₁₆ "	8
50	M12x30	8	M16x35	8	M16x35	8	M16x35	8	5/8" x 1 ¹ / ₂ "	8
65	M12x30	8	M16x35	8	M16x35	8	M16x35	8	5/8" x 1 ¹ / ₂ "	8
80	M16x35	8	M16x35	8	M16x35	16	M16x35	8	5/8" x 1 ¹ / ₂ "	8
100	M16x35	8*	M16x40	16	M16x40	16	M16x45	16	5/8" x 1 ³ / ₄ "	16
125	M16x40	16	M16x45	16	M16x45	16	M20x45	16	3/4" x 1 ³ / ₄ "	16
150	M16x40	16	M20x45	16	M20x45	16	M20x50	16	3/4" x 2"	16
200	M16x40	16	M20x50	16	M20x50	24	M20x55	16	3/4" x 2 ¹ / ₄ "	16
250	M16x50	24	M20x55	24	M22x55	24	M24x55	24	7/8" x 2 ¹ / ₄ "	24
300	M20x55	24	M20x60	24	M22x60	24	M24x60	24	7/8" x 2 ¹ / ₂ "	24

* - 16 bolts are used for butterfly valves for oils

INSTALLATION

Butterfly valves can be installed on pipelines for whichever direction of flow. They are suitable for installation between pipeline flanges to PN, DIN or ANSI standards with no need of additional gaskets. They can be installed at discretional mounting position.

Before installation of a butterfly valve between pipeline flanges it is recommended to apply a thin coat of silicone grease onto these surfaces of the packing gasket that match the flanges in order to avoid sticking of the gasket and its damage during installation.

After having the PRS-1 butterfly valve with the half-open throttling disk placed between the pipeline flanges it should be carefully aligned. Then insert the stud bolt to fix position of the valve on the outer surface of the body. Place nuts and tighten then uniformly. After completion of the installation the valve should be opened and closed for several times to make sure that it has been correctly installed. Position of the throttling disk is indicated by the notch on the driving rod.

The PRS-2 butterfly valves can be installed at the end of pipelines as co called termination valves for fluids. If so, it is recommended to use necked flanges. If a butterfly valve is used a termination device the utility pressure should not exceed 50% of the rated value for the valve.

MARKING

Orders must contain type of the butterfly valve, its nominal size, rated pressure PN, material of the packing ring or utility specification and temperature as well as type of actuating mechanism.

EXAMPLE PRS1-DN80-PN10-EPDM-D1

www.polna.com.pl

PISTON DESUPERHEATERS TYPE ST-1

APPLICATION AREA:

The Piston Desuperheater is used for steam temperature control systems in industry and power engineering. It offers important advantages, including perfect atomization of water and high rangeability.

FEATURES:

- possible customizing of the device design to adjust flow rates to customers' demands,
- removing of device vibrations owing to the support on a pipeline connecting stud,
- resistance to loss of tightness due to application of a spiral and spring washer made of metal and graphite and installed on the connecting stud,
- wide range of flange connections,
- selection of materials according to customers' demands,
- easy replacement of the seat and other internal components of the desuperheater,
- no welded joints between nozzles and device heads,
- possible application of a uniformed type of pneumatic actuators with stroke range up to 100 mm,
- possible use of other actuators upon customers' requirements, including pneumatic, electric or hydraulic driving units.

OPERATION PRINCIPLE:

After having the seat opened the cooling water is delivered via the lateral flange connection into the desuperheater interior, The desuperheater head incorporates a series of independent jets that are able to atomize water within the full cone of injection with the top angle of 90°. The piston, sealed with steel packing rings, moves inside the head. Piston movements enable water flow to subsequent nozzles which makes the flow characteristic linear, with nearly equal percentage rates. Number and flow capacity of individual nozzles are accordingly adjusted to achieve the desired flow coefficient. Both the head and all the nozzles are secured against unintentional unscrewing by a permanent set (a bead) on the securing ring. The desuperheater has split design that allows for easy replacement of seat and internal parts.

DESIGN

Flanged ports:

 - water:
 DN25/ 40/ 50; PN40; 63; 100; 160

 - steam:
 DN80/ 100/ 150; PN25; 40; 63; 100

 Other values of DN /PN as well as flanged ports to ANSI standards - upon request.

 Nozzles:

- with full and empty atomization cone, spraying angle 60...90°.

Materials: - body, bonnet: - head, internal components: - nozzles: Other materials - upon request.	13CrMo 4-5 ; (1.7335) X17CrNi 16-2 ; (1.4057) X6CrNiMoTi 17-12-2 ; (1.457				
Flow coefficients:	Kv 0,15…10				
Leakage class (leakage class):	class V to PN-IEC 60534-4				
Rangeability:	40:1				

Actuation:

A spring-loaded pneumatic actuator of diaphragm type, diaphragm active area series P4 of 240cm², maximum stroke - 100mm, supply pressure - 400 kPa, spring range 160...320 kPa. Other actuators - upon request.

Table 1. Piston stroke vs. Kvs and diameter of steam port

Steam port DN	Kv	Stroke [mm]
80	0,151,0	60
100	1,02,5	00
150	2,55	80
	510	100

Fig. 1 Possible locations of the flanged water port with respect to steam flow direction

CODE EXAMPLE: The pneumatic actuator of direct action , size - 240cm², stroke 60 mm, control pressure range 160...320 kPa, steam port DN80 PN63, water port DN25 PN40, steam pipeline DN600 PN40, location of the water port 270°, Kvs 1, linear characteristic curve:

P4 - ST-1 - DN80/PN63 - DN25/PN40 - DN600/PN40 - 270° - Kvs 1L

ORDER PLACEMENT:

Orders must contain specification of the actuator by the original manufacturer (OEM) data sheets, marking code of the desuperheater and its working parameters: pressure and temperature of the flowing fluids. Beside the aforementioned parameters the rated plate of a desuperheater comprises the following information:

- maximum working temperature [TS],
- maximum working pressure [PS]
 test pressure [PT]
- class of fluids [2],
- serial number and year of manufacturing.

Please refer to our Marketing and Sales Department as well as the Technical Department for assistance to choose valves that suit your needs.

MINIMUM FLOW VALVE TYPE ZM1 and Z1B-M

APPLICATION:

Minimum flow valves are designed for work in recirculation systems of pumps feeding power station boilers. They protect the pumps from hydraulic and heat overload in the case of a low water reception by the boiler, guaranteeing a minimum flow in a by-pass circuit of the pump.

Figure 1. Diagram of installation of power station boiler feedwater.

- 1) Condensate pump.
- 2) Degasser.
- 3) Boiler feedwater pump.
- 4) Cut-off valve.
- 5) Boiler feedwater start-up valve.
- 6) Boiler feedwater control valve.
- 7) Boiler.
- 8) Minimum flow valve type ZM1.

FEATURES:

• Anti-cavitation manufacture with active and passive choking structures, allowing for valve's work both in the regulation function and in the on-off function,

- Body integrated with a bonnet, which reduces the number of potential leakage places. Another side of the body is protected with a self-tightening closure.
- High tightness of closure achieved thanks to FCT function (pressure closes).

• High durability and effectiveness of bonnet packings achieved, among other things, by placing them in low pressure zone,

• Use of an element protecting regulatory parts of the valve from polluting.

DESIGN AND TECHNICAL SPECIFIACTION:

Body:	forged, single-unit with a bonnet, with welded inlet / outlet stubs
Nominal size:	DN50
Nominal pressure:	PN320
Body ends:	for welding, Ø76x13
Closure tightness:	V class in accordance with PN-EN 60534-4.
Flow direction:	over the plug

actual (12mm): 180...280 kPa Supply pressure: 400 kPa

Electrical actuator:

Disposition force: 10kN

Note: other data as in catalogue sheets of actuators type P/R, P1/R1, P5/R5.

MARKING EXAMPLE:

In the marking, the actuator's symbol and valve type have to be given, e.g. **R-400-ZM1; R1-400-ZM1; R5N-400-ZM1**.

The mark is placed on the data plate of the valve.

Besides, the following items are given:

nominal size of the valve [DN], marking of nominal pressure of the valve [PN], max. working temperature [TS], max. working pressure [PS], test pressure [PT], flow coefficient [Kvs], leap of plug [H], fluid group [1 or 2], serial number and year of manufacture.

ORDERING:

An order should include information necessary for calculating the valve's properties in accordance with the technical data questionnaire. You can be assisted with selecting valves by workers of the Marketing and Sales Department and the Technical Department.

MINIMUM FLOW VALVE TYPE Z1B-M

APPLICATION:

Valve type Z1B-M, owing to its design, material choice and manufacturing technology, adjusted to operation under most demanding working conditions, at high pressure drop and with the risk of cavitation occurring.

The valve, as presented herein, can be used as a minimum flow valve in by-pass systems of feeding pumps in power boilers.

CHARACTERISTICS:

Minimum flow valve type Z1B-M is anti-cavitation valve designed for liquid at pressure drop of up to 200 bar and flow of 70 t/h.

Valve design provides for division of pressure drop on the valve into six steps, so that the pressure reductions do not exceed critical levels causing cavitation.

High quality of control, durability and reliability has been achieved due to appropriate design of internal parts and material selection.

Seat and three-step plug are made of ZrO₂ ceramics, which features excellent durability and chemical resistance.

Further pressure drop is achieved through active throttling in three multihole hardened sleeves with radial flow. Valve stem is made of titanium and it co-operates with bonnet packing set, which provides for external tightness in accordance with TA Luft regulations.

The valve guarantees high shut-off tightness.

It is also possible to adapt this design solution to other demanding applications in globe and angle designs.

NOTES:

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

DIAPHRAGM MULTI-SPRING PNEUMATIC ACTUATORS TYPE P/R

APPLICATION AREA

The multi-spring membrane pneumatic actuators of P/R type are applied for control operation of control valves and other positioning elements in industrial automatic systems.

There are three following design options of the acutator:

- direct action (air advances the steam)
- reverse action (air retracts the steam)
- direct action, handwheel
- reverse action, handwheel

- type R. - type PN,

- type P,

- type RN

FEATURES

 completely reversible action, option to change spring range w/o extra parts,

- actuator mounted on the columns,
- wide range of the available forces,
- linear relationship between rod displacement and control pressure as a result of using membranes with constant active area,

• various ranges of spring pressures due to changeability of spring number and /or dislocation of distance fencers,

• capability of the actuator o incorporate side-mounted handwheel,pneumatic or electro-pneumatic positioners, limit switches, air sets, three-way pneumatic solenoid valves, lockup valves, position transducers.

 possibility to equip with accessories allowing to decrease or increase distortion time,

- high strength of diaphragms, springs and packings,
- small size and weight

TECHNICAL PARAMETERS

input signal range:	20100 kPa;	spring range marking:	1
	40200 kPa;		2
	40120 kPa		3
	80240 kPa;		4
	60140 kPa;		5
	120280 kPa		6
	180380 kPa		7
Number of springs:	standard wersi	ion:	
	range	1, 3, 5 - 3 springs	
	range	2, 4, 6 - 6 springs	
	range	7 - 12 springs	
version TANDEM:	range	1, 3, 5 - 6 springs	
	range	2, 4, 6 - 12 springs	
	range	7 - 24 springs	
 working temperature: 	- 40+80°C		
 relative humidity: 	max. 98%		

Table 1. Te	chnical parameters.				
Cizo	Diaphragm effective area	Stroke	Chring range marking	Max. supply pressure	
SIZE	[cm ²]	[mm]	Spring range marking	[kPa]	
160	160				
250	250	20	16	600	
400	400			600	
630	630	20, 20			
R-630T	2x630	20, 30			
1000	1000	38; 50; 63	17	500	
1500	1500	38; 50; 63; 80; 100]	500	
1500T	2x1500	50; 63; 80; 100			

DIMENSIONS AND WEIGHT

Table 2. Dimensions and weight of the actuators $\ensuremath{\mathsf{P/R-160...1000}}$.

		р	Б		С			4	г	г	г	C		Weight
Actuator size			D ₁	P, PN	R, RN		D ₂	u ₁			г ₂	G	P,R	PN, RN
		[mm]									[kg]			
160	110	0.1	10	110	84	210	225	M40	00	288	450		9	13,5
250		31	10	112		240	0.05	IVI I Z	22	306	468		10	14,5
400			20	116	00	305	220			312	474	M12x1,25	16	20,5
630	132	39		134	00	075	305	M16	28	402	564		30	37
R-630T			22	-		375	-			616	-		45	52
1000	216	50		210	127	477	450	M24	42	585	825	M16x1,5	74	100

Disposition forces:

Disposition actuator forces Fs [kN]:

Pneumatic actuator type P: Pneumatic actuator type R:

```
Fs = 10^{-4} \cdot A \cdot (p_z - p_2),
Fs = 10^{-4} \cdot A \cdot p_1
```

where:

- A Diaphragm effective area [cm²] acc. table 1,
- p_z supply pressure [kPa] acc. table 4

 p_1 ; p_2 - Opening and closing spring range [kPa] - acc. table 4.

Table 4. Disposition forces for actuators Fs [kN].

		Actuator F)			Act	uator R					
	Supply pressure				Spring range							
Size		[kPa]					kPa]					
	140	250	400	20100	40120 40200	60140	80240	120280	180380			
160	0,64	2,4	4,8	0,32	0,64	0,96	1,28	1,92	-			
250	1,0	3,8	7,5	0,5	1,0	1,5	2,0	3,0	-			
400	1,6	6,0	12,0	0,8	1,6	2,4	3,2	4,8	-			
630	2,5	9,5	18,9	1,3	2,5	3,8	5,0	7,6	11,3			
R-630T	-	-	-	2,6	5,0	7,6	10,0	15,2	22,6			
1000	4,0	15,0	30,0	2,0	4,0	6,0	8,0	12,0	18,0			
1500	6,0	22,5	45,0	3,0	6,0	9,0	12,0	18,0	27,0			
1500T	12,0	45,0	90,0	6,0	12,0	18,0	24,0	36,0	54,0			

Note:

1. For actuators "P" assumed spring range 20...100 kPa and standard supply pressure.

2. Disposition forces calculated with the use of formulas or given in the table do not take into consideration friction

or manufacture tolerances so the forces should be assumed as 15...20% lower than those values.

3. Actuator 630T occure only in type "R".

Example of the product code:

The pneumatic actuator of inversed action, with a handwheel, size – 400, threaded connection M12x1,25, stroke 20 mm, spring range 40...200:

RN - 400 - 20 - 2 - 12

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

DIAPHRAGM MULTI-SPRING PNEUMATIC ACTUATORS TYPE P1/R1

APPLICATION AREA

The multi-spring diaphragm pneumatic actuators of P1/R1 type are applied for control operation of control valves and other positioning elements in industrial automatic systems.

There are three design options of the acutators:

- direct action (air advances the steam)
- reverse action (air retracts the steam)
- direct action, handwheel
- reverse action, handwheel

- type P1, - type R1,
- type P1B,
- type R1B

FEATURES

- completely reversible action, option to change spring range w/o extra parts,
- rigid structure of cast yoke,
- wide range of available forces,

• linear dependence of stem movement from control pressure, due to application of diaphragms with constant effective area,

• various spring ranges achieved by changing the number of springs and/or changing position of spacer elements,

• capability of the actuator to incorporate side-mounted handwheel, pneumatic or electro-pneumatic

positioners, limit switches, air sets, three-way pneumatic solenoid

valves, lockup valves, position transducers,

- high strength of diaphragms, springs and packings,
- low weights and small overall dimensions.

TECHNICAL PARAMETERS

- input signal range:

20...100 kPa; 40...120 kPa; 60...140 kPa 40...200 kPa; 80...240 kPa; 120...280 kPa 180...380 kPa

- 3 springs
- 6 springs

180...380 kPa - 12 springs Doubled number of springs (TANDEM version) for the 1500T actuator

- max. supply pressure:

- working temperature:

- relative humidity:

Diaphragm effective area	Stroke	Spring range
[cm ²]	[mm]	[kPa]
400	20	16
630	20; 38	
1000	38; 50; 63	1 7
1500	38; 50; 63; 80; 100	11
1500T	50; 63; 80; 100	

DIMENSIONS AND WEIGHTS

Actuator size			C P1; R1; P1B R1B		D	_	-					
	А	D			U		Г	u				
					[mm]							
400	453	305	127	100	57 15	17,7	255	M12x1,25				
620	510	275	107	127 107 57,15 84,15	57,15	17,7	200	M12x1,25				
030	540	375	121		107	107	84,15	22,5	200	M16x1,5		
1000	770	477	150	00	57,15	17,7	240	M12x1,25				
1000	113	//3 4//	// 153	7 153 90	4// 103 90	100 90	53 90	153 90	84,15; 95,25	22,5	340	M20x1,5
1500	833	550			57,15	17,7		M12x1,25				
1500	033	550	184	102	84,15; 95,25	22.5	410	M20x1,5				
1500T	1138	550			84,15; 95,25	22,5		M24x1,5				

	Weight				
Actuator size	P1; R1	P1B; R1B			
	[kg]				
400	20	28			
630	40	50			
1000	85	105			
1500	120	150			
1500T	225	255			

PRODUCT CODE

		C		
Type: - direct action: - reverse action: - direct action, with drive: reverse action with drive:	P1 R1 P1B B1B		Connection thread: M12x1,25 M16x1,5 M20x1,5	12 16 20
Size:	400 630 1000		Spud diameter [mm]: 57,15 84,15 95,25	57 84 95
Stroke [mm]:	1500 1500T 20		Spring range [kPa]: 20100	1
	38 50 63 80		40200 40120 80240 60140	∠ 3 4 5 6

Example of the product code:

The pneumatic actuator of reverse action, with handwheel, size – 400, stroke 20 mm, spring range 40...200 kPa, with yoke \emptyset 57,15, and connection thread M12x1,25:

HEAT ENGINEERING – TECHNICAL INFORMATION

INTRODUCTION:

Thermal centres play an important role within heat engineering. The following factors are the reasons for this: • Automation of a thermal centre makes settlements between the supplier and consumer of heat possible, based on the heat actually consumed; at the same time it allows to regulate the heat receiver in accordance with the supplier's requirements (limiting flow through the centre and parameters of water returning to the network) and enable the consumer to limit the amount of heat received at their own will,

• Automation of the thermal centre accounts for the greatest percentage share in power saving out of the total saving that may be achieved through automation of the whole heating system and internal installations of a building,

• Without automation of the thermal centre, automation of internal installations of a building is impossible,

• Automation of a thermal centre makes heat supply to a building independent of fluctuations from the network parameters caused by changes in consumption from neighbouring thermal centres,

• A high number of thermal centres and the demand for automatic control equipment resulting from it, justifies the design and manufacture of specialized assortments of so called heat engineering equipment, including self-operating regulators.

GENERAL CHARACTERISTICS OF REGULATORS:

Zakłady Automatyki "POLNA" S.A. in Przemyśl produces two series of types of self operating regulators:

- Type ZSN, with a flanged body ranging from DN15 to 100,
- Type ZSG, with a thread body end ranging from DN15 to 32.

The regulators are designed for fixed set-point pressure regulation, regulation of pressure differences and/or flow differences in technological installations connected with the regulator's valve in series or parallel.

Depending on the purpose, regulators are divided into the following types:

- • ZSN1; ZSG1 for regulation of pressure after the valve (reducer),
- • ZSN2 for regulation of pressure after the valve (reducer) with an intensifier,
- ZSN3; ZSG3 for regulation of pressure before the valve (bleed regulator),
- ZSN5; ZSG5 for regulation of pressure differences with flow limitation on the installation connected with the regulator's valve in series,
- ZSN6; ZSG6 for regulation of pressure differences with flow limitation on the installation connected with the regulator's valve in series (installation on the return),
- ZSN7; ZSG7 for regulation of pressure differences on the installation connected with the regulator's valve in parallel,
- ZSN8; ZSG8 for flow regulation
- ZSN91; ZSG9.1 for regulation of pressure differences and flow regulation on the installation connected with the regulator's valve in series (installation on the supply),
- ZSN92; ZSG9.2 for regulation of pressure differences and flow regulation on the installation connected with the regulator's valve in series (installation on the return),
- ZSN10 for regulation of pressure differences on the installation connected with the regulator's valve in series, with electromagnetic control.

PRINCIPLES OF SELECTING REGULATORS:

A. SELECTION OF REGULATOR'S VALVE

Selection of a regulator's valve means determination of flow coefficient Kv, and then the maximum flow of the medium through the valve or the minimum pressure drop on it.

- disposition pressure difference [kPa], which means pressure drop between the points with the highest Δp_d and the lowest pressure in the centre. Pressure difference between points 1 and 4 or 5 and 8.
- pressure on valve's inlet (closing component) [kPa] (for steam and gases this should be regarded as p₁ the absolute pressure),
- pressure on valve's outlet [kPa] (for steam and gases this should be regarded as the absolute \mathbf{p}_2 pressure),
- pressure drop on the valve's closing component [kPa]; $(\Delta p=p_1-p_2)$, Δр

- pressure difference on the flow limiter: (20 kPa lub 50 kPa), Δp_n

In regulators without flow limitation, installed on the supply or on the return, and in regulators ZSN6 and ZSG6 (installed on the return), pressure drop on the valve should be assumed for the calculation of flow coefficient:

$$\Delta p = p_1 - p_2 = \Delta p_d - \Delta p_r$$

For other regulators, installed on the supply or on the return:

$$\Delta p = p_1 - p_2 = \Delta p_d - \Delta p_r - \Delta p_p$$

1. Selection procedure for water.

Pressure drop Δp [kPa] on the regulator's value is:

$$\Delta p = p_1 - p_2$$

The calculated flow coefficient of regulator's valve [m³/h] is:

$$Kv = \frac{10 \cdot Q}{\sqrt{\Delta p}}$$

After calculating the minimum flow coefficient Kv that way, you should choose from the data board of the regulator, according to catalogue sheets, the nearest flow coefficient Kvs, so that:

The minimum pressure drop on a fully open valve of the regulator should be:

Q

p_z

and

$$\Delta p_{min.} = \frac{100 \cdot Q^2}{Kvs^2} - \text{for regulators with a flow limiter}$$

$$\Delta p_{\text{min.}} = \frac{100 \cdot Q^2}{Kvs^2} + \Delta p_{\text{p}} \quad \text{- for regulators with a flow limiter}$$

The maximum flow through the valve is:

$$Q_{max} = 0,1 \cdot Kvs \cdot \sqrt{\Delta p}$$

2. Selection procedure for use on steam and gases.

Selection for those applications should be done by the manufacturer of the product.

B. NOISE.

Noise is generated by a valve results from cavitation (when concerning liquids) and excessive flow speed on the valve outlet (when concerning gases).

In regulators ZSN and ZSG no special construction means are designed to lower the potential noise. Therefore, below we just mention situations when excessive noise may occur, which need to be checked after selection of the regulator's valve.

If the boundary condition is exceeded, and the excessive noise is unacceptable (e.g. because of faster wearing out of the valve's closing component due to cavitation), systemic solutions should be applied to avoid such noise.

Such solution are as follows:

- By lowering the temperature on the valve's inlet (e.g. by moving the valve from the supply to the run-off),
- By lowering the pressure on the valve's inlet (e.g. by installing diaphragms before the valve or an additional reduction level)
- By increasing the pressure on the valve's inlet (e.g. by installing diaphragms after the valve or using choking elements in the form of multi-hole plates on the valve's outlet).

The reduction of noise has some conditions by not exceeding the boundary flow speed v = 3 [m/s] in water installations. This condition limits the maximum flow to the following value:

$$Q_{1 \text{ max}} [m^3/h] = 8,5 \cdot 10^{-3} \cdot DN^2$$

At the flow speed of up to 5 [m/s], higher noise and a possibility of partial cavitation have to be taken into consideration and that value should not be exceeded:

 $Q_{2 max} [m^{3}/h] = 14 \cdot 10^{-3} \cdot DN^{2}$

for DN50 - $\rm Q_{1\,max.}$ = 21 [m³/h] i $\rm Q_{2\,max.}$ = 35 [m³/h]

C. SELECTION OF SETTING RANGE

The setting range of a regulator should be selected so that the value of regulated pressure would be in the lower half of the setting range. This ensures work with a lower spring tension and results in better parameters of work characteristics (proportionality, insensitivity and hysteresis ranges).

Apart from setting ranges recommended in our catalogue sheets, there are also special ranges that are possible.

D. CALCULATION EXAMPLES.

Example 1.

Regulator of pressure differences, installation on the supply, for water.

Technical data:

• Disposition pressure difference $-\Delta p_d = 450 \text{ kPa}$,

- Regulated pressure difference $-\Delta p_r = 60 \text{ kPa}$,
- Maximum flow $-Q = 12 \text{ m}^3/\text{h}$

Calculations:

 $\Delta p = p_1 - p_2 = \Delta p_d - \Delta p_r = 450 - 60 = 390 \text{ kPa}$

$$Kv = \frac{10 \cdot Q}{\sqrt{\Delta p}} = \frac{10 \cdot 12}{\sqrt{390}} = 6,0$$

In such a case, we choose a ZSN5 regulator, Kvs 8, setting range 40...160 kPa.

The nominal diameter of the regulator will be selected after an analysis of the flow speeds:

 $Q_{1 \text{ max}} [m^3/h] = 8,5 \cdot 10^{-3} \cdot DN^2$ ($v_{\text{max}} = 3 \text{ m/s}$),

 $Q_{2 max} [m^3/h] = 14 \cdot 10^{-3} \cdot DN^2$ ($v_{max} = 5 m/s$),

- for DN25 $Q_{1 max} = 5,3 m^3/h$; $Q_{2 max} = 8,75 m^3/h$,
- for DN32 $Q_{1 max} = 8,7 \text{ m}^3/\text{h}$; $Q_{2 max} = 14,3 \text{ m}^3/\text{h}$,
- for DN40 $Q_{1 max} = 13,6 \text{ m}^3/\text{h}$; $Q_{2 max} = 22,4 \text{ m}^3/\text{h}$,

By choosing a DN25 regulator, we have to take into account a significant level of noise. Regulator DN32 in a special Kvs8 product is more beneficial. Regulator DN40 guarantees the greatest comfort as for the loudness of work.

Example 2.

A dual-function regulator of pressure differences and flow, for an installation on the return, for water.

Technical data:

•	Disposition pressure difference	- ∆p _d = 400 kPa,
•	Regulated pressure difference	- ∆p, = 180 kPa,
•	Maximum flow	- Q = 32 m³/h
•	Choke setting assumed	- ∆p _p = 50 kPa,

Calculations: $\Delta p = p_1 - p_2 = \Delta p_d - \Delta p_r - \Delta p_p = 400 - 180 - 50 = 170 \text{ kPa}$ $Kv = \frac{10 \cdot Q}{m} = \frac{10 \cdot 32}{m} = 24.5$

$$\sqrt{\Delta p}$$
 $\sqrt{170}$
Kvs ≅ $\frac{Kv}{0.85}$ ≅ 29 assume Kvs 32

In such a case we would choose a ZSN92; DN50; Kvs32; with pressure differences setting range 80...320 kPa, choke setting 50 kPa.

Depending on the flow speed, the flow is:

 $Q_{1 max} = 21 m^3/h$; $Q_{2 max} = 35 m^3/h$,

The regulator will work with an increased noise level. The following condition is fulfilled:

 $\Delta p_{d} = 400 > 2 \cdot \Delta p_{r} = 2 \cdot 180 = 360$

With a fully open choke, the valve works as a pressure differences regulator. The maximum flow is dependent on the acceptable flow speed. The range of flow regulation depends on the position of the choke and setting Δp_n .

$$Q = (0, 1... 1, 0) \cdot 10^{-1} \cdot \text{Kvs} \cdot \sqrt{\Delta p_p}$$
$$Q_{\text{min.}} = 0, 1 \cdot 10^{-1} \cdot 32 \cdot \sqrt{50} = 2,3 \text{ m}^3/\text{h}$$
$$Q_{\text{max.}} = 1 \cdot 10^{-1} \cdot 32 \cdot \sqrt{50} = 23 \text{ m}^3/\text{h}$$

"**POLNA" S.A.** 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

SELF-ACTUATING PRESSURE REDUCING REGULATORS TYPE ZSG 1

APPLICATION AREA:

These regulators are used to maintain the desired working pressure in process instalations that are connected to the outlet of the adjusting valve. Pressure rise in the monitored installation results in the valve shut-off. The valves are used in heating systems, industrial facilities to control pressure of flowing water, either cold or hot with temperature up to 150°C as well as non-flammable gases up to 80°C. Nominal pressure for the valves is PN25. Application of the devices for other utilities needs authorization of the manufacturer.

FEATURES:

- compact, sturdy design with small overall dimensions,
- · high accuracy of adjustment,
- wide range of flow coefficients K_{vs},
- wide variety of connections, easy installation,
- · protection against hydraulic overloads,
- guaranteed internal tightness and lack of external leaks,
- silent operation,
- long lifetime.

DESIGN:

The regulator consists of the flow control valve (01) and the hydraulic actuator (02) that are combined into a single (cast) structure. The adjusting unit (03) for the controlled pressure is placed outside the actuator.

Valve - single-ported, with a pressure balanced plug, with tight shut-off. **Actuator** - diaphragm–type, with robust and durable diaphragm (active area of 40 cm²).

Connections - pipe stubs for welding, threaded stubs or flanges to PN, DIN or ISO for pressure PN16 or PN25 as well as CL150 (the device with no connections is also available).

OPERATION PRINCIPLE:

When de-energized, the regulator valve is open. The impulse of adjustable pressure is delivered via a impulse pipe to the actuator chamber from the side of the spring. Pressure rise, above the presettable value that is adjusted by tension of the spring in the adjusting unit, results in proportional closing of the valve seat until the moment when the desired pressure value is restored.

DESIGN OPTIONS:

- **ZSG 1.1** with a permanent connection (factory-made) of pressure impulse to the regulator,
- **ZSG 1.2** the impulse line can be connected to a whichever point of the installation downstream the regulator outlet.

INSTALLATION

The regulator should be installed on a horizontal section of pipeline with the spring downward. Flow direction must match the arrow on the valve body. Application of strainers upstream of regulators is recommended.

To guarantee silent operation of the regulator the flow velocity of utilities in the controlled pipeline should not exceed 3 m/s for liquids and 12 m/s for gases.

Design of the regulator enables fitting of leaden seals to the adjustable parts after the desired settings are set. achieved.

INSTALLATION KIT:

The regulator is delivered along with a factory-made installation kit that includes necessary fittings to connect impulse lines (pipes) \emptyset 6 x 1. Connections for installation on a pipeline (e.g. mating flanges) can be delivered as supplementary fittings (upon a separate order).

Connection typ	De	DN15	DN20	DN25	DN32
Stub pipe for welding		8520144000	8520145000	8520146000	8520147000
Threaded stub pipe		8520148000	8520149000	8520150000	8520151000
Flamma	PN16; PN25	8520136000	8520138000	8520140000	8520142000
rialige	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (pos. 05)		8121795000	8121796000	8121797000	8121798000

ORDER PLACEMENT

Orders must contain full name of the product, nominal diameter DN, flow coefficient K_{vs} , range of settings and fittings.

EXAMPLE OF THE PRODUCT CODE:

Pressure regulator type ZSG, with connected impulse pipe; nominal diameter DN25; K_{vs} =3,6; range of settings 20...400 [kPa]; with stub pipes for welding:

ZSG1.1-25-3,6-400-2

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

SELF-ACTUATING PRESSURE RELIEF REGULATORS TYPE ZSG 3

APPLICATION AREA:

These regulators are used to maintain the desired working pressure in process instalations that are connected to the inlet of the adjusting valve. Pressure rise in the monitored installation results in the valve opening. The valves are used in heating systems and industrial facilities to control pressure of flowing water, either cold or hot with temperature up to 150°C as well as non-flammable gases up to 80°C. Nominal pressure for the valves is PN25. Application of the devices for other utilities needs authorization of the manufacturer.

FEATURES:

- compact, sturdy design with small overall dimensions,
- · high accuracy of adjustment,
- wide range of flow coefficients K_{vs},
- wide variety of connections, easy installation,
- protection against hydraulic overloads,
- guaranteed internal tightness and lack of external leaks,
- silent operation,
- long lifetime.

DESIGN:

The regulator consists of the flow control valve (01) and the hydraulic actuator (02) that are combined into a single (cast) structure. The adjusting unit (03) for the controlled pressure is placed outside the actuator. **Valve** - single-ported, with a pressure balanced plug, with tight shut-off.

Actuator - diaphragm - type, with robust and durable diaphragm (active area of 40 cm²)

Connections – pipe stubs for welding, threaded stubs or flanges to PN, DIN or ISO for pressure PN16 or PN25 as well as CL150 (the device with no connections is also available).

OPERATION PRINCIPLE:

When de-energized, the regulator valve is closed. The impulse of adjustable pressure is delivered via a impulse pipe to the actuator chamber from the side of the valve. Pressure rise, above the presettable value that is adjusted by tension of the spring in the adjusting unit, results in proportional opening of the valve seat until the moment when the desired pressure value is restored.

DESIGN OPTIONS:

ZSG 3.1 -with a permanent connection of pressure impulse to the regulator,ZSG 3.2 -the impulse line can be connected to a whichever point of the installation upstream theregulator inlet.regulator inlet.

	meter DN	15	20	25	32
	full	3.6	5	7,2	10
Flow coefficient		2.5	3.6	5.7	7.2
K _{vs} [m³/h]	reduced	1,6	2,5	3,6	5,7
[,]		1	1,6 1	2,5	3,6
Noise factor Z	1	0,0	6	0,55	2,0
Connection size for the body	/ G	G 3/4	G 1	G 1 1/4	G 1 3/4
Outer diameter of the pipe d	1 [mm]	21,3	26,9	33,7	42,4
Outer diameter of the conne	cting stub d ₂	R 1/2	R 3/4	R 1	R 1 1/4
Wrench size S		32	41	50	60
	L _o [mm]	70	75	80	105
Face to face length	L ₁ [mm]	184	199	224	269
Face-to-face length	L ₂ [mm]	136	151	164	195
	L ₃ PN / CL [mm]	130 / 184	150 / 184	160 / 184	180 / 200
Height	A [mm]	273	273	273	288
	B [mm]	36	36	38	49
				(MAAAAA	AAAAAAAA,
- with connecting stubs	s for welding	- with threaded conn	ection	- with flar	nges
ninal pressure:					
for the body	– PN25				
tor flanges	_ PN16; PN25;	CL150			
across the valve	– 16 [bar]				
	· ~ [~~.]				
across the actuator	[.] – 16 [bar]				(05)
across the actuator wable fluid temperate	^r – 16 [bar] ure:				05
across the actuator wable fluid temperation liquids	r – 16 [bar] ure: – +150 [°C]				05
across the actuator wable fluid temperate liquids non-flammable gas	r – 16 [bar] ure: 	l (areen spring)			05 01
across the actuator wable fluid temperation liquids non-flammable gas nge of settings	r – 16 [bar] ure: – +150 [°C] ies – +80 [°C] – 10…100 [kPa – 10…200 [kPa] (green spring)] (yellow spring)			05
across the actuator owable fluid temperate liquids non-flammable gas nge of settings	r – 16 [bar] ure: – +150 [°C] ;es – +80 [°C] – 10100 [kPa – 10200 [kPa – 20400 [kPa] (green spring)] (yellow spring) a] (red spring)			05 01 (02)
across the actuator owable fluid temperation liquids non-flammable gas nge of settings	r – 16 [bar] ure:] (green spring)] (yellow spring) a] (red spring) I-EN 60534-4			05 01 02
across the actuator owable fluid temperati liquids non-flammable gas nge of settings akage class TERIALS	r – 16 [bar] ure: – +150 [°C] ies – +80 [°C] – 10100 [kPa – 10200 [kPa – 20400 [kPa – VI class to PN] (green spring)] (yellow spring) a] (red spring) N-EN 60534-4	19I T		05 01 02 03
across the actuator owable fluid temperation liquids non-flammable gas nge of settings akage class ITERIALS dy, bonnet	 16 [bar] ure: +150 [°C] es - +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa VI class to PN spheroidal iro steel K O X6C 	i] (green spring)] (yellow spring) a] (red spring) N-EN 60534-4 n to EN-GJS-400- rNiMoTi17-12-2 (*	-18LT 1 4571)		05 01 02 03
across the actuator wable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at	 16 [bar] +150 [°C] +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn39 	I] (green spring) I] (yellow spring) I] (red spring) I-EN 60534-4 n to EN-GJS-400 rNiMoTi17-12-2 (1 9Pb3	-18LT 1.4571)		05 01 02 03
across the actuator pwable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g	 16 [bar] ure: +150 [°C] ies - +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn38 stainless stee] (green spring)] (yellow spring) a] (red spring) N-EN 60534-4 n to EN-GJS-400 rNiMoTi17-12-2 (9Pb3 I X17CrNi16-2 (1.	-18LT 1.4571) 4057)		
across the actuator owable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g em iding sleeves	 16 [bar] +150 [°C] +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn38 stainless stee steel with PTF] (green spring)] (yellow spring) a] (red spring) N-EN 60534-4 n to EN-GJS-400 rNiMoTi17-12-2 (Pb3 I X17CrNi16-2 (1. E lining	-18LT 1.4571) 4057)		
across the actuator owable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g iding sleeves ernal springs	 16 [bar] +150 [°C] +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn39 stainless stee steel with PTF spring stainles 	I] (green spring) I] (yellow spring) I] (red spring) I-EN 60534-4 n to EN-GJS-400 rNiMoTi17-12-2 (Pb3 II X17CrNi16-2 (1. E lining ss steel 12R10	-18LT 1.4571) 4057)		
across the actuator owable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g em iding sleeves ernal springs usting spring	 16 [bar] ure: +150 [°C] ses - +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn38 stainless stee steel with PTF spring stainles spring steel C 	I] (green spring) I] (yellow spring) I] (red spring) I-EN 60534-4 In to EN-GJS-400- rNiMoTi17-12-2 (PPb3 II X17CrNi16-2 (1. FE lining ss steel 12R10 C grade	-18LT 1.4571) 4057)		
across the actuator pwable fluid temperation liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g m iding sleeves arnal springs usting spring phragm	 16 [bar] ure: +150 [°C] es +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn38 stainless stee steel with PTF spring stainles spring steel C EPDM¹) with p] (green spring)] (yellow spring) a] (red spring) J-EN 60534-4 n to EN-GJS-400 rNiMoTi17-12-2 (9Pb3 d X17CrNi16-2 (1. E lining ss steel 12R10 grade polyester cloth	-18LT 1.4571) 4057)		
across the actuator pwable fluid temperate liquids non-flammable gas nge of settings akage class TERIALS dy, bonnet at g m iding sleeves ernal springs usting spring phragm aling nnections	 16 [bar] ure: +150 [°C] ses - +80 [°C] 10100 [kPa 10200 [kPa 20400 [kPa 20400 [kPa VI class to PN spheroidal iro steel K.O.X6C brass CuZn39 stainless stee steel with PTF spring stainles spring steel C EPDM¹) carbon steel 	a] (green spring) a] (yellow spring) a] (red spring) a-EN 60534-4 n to EN-GJS-400- rNiMoTi17-12-2 (10) Pb3 al X17CrNi16-2 (10) FE lining ss steel 12R10 c) grade polyester cloth for welding S35	-18LT 1.4571) 4057)		

INSTALLATION

The regulator should be installed on a horizontal section of pipeline with the spring downward. Flow direction must match the arrow on the valve body. Application of strainers upstream of regulators is recommended.

To guarantee silent operation of the regulator the flow velocity of utilities in the controlled pipeline should not exceed 3 m/s for liquids and 12 m/s for gases.

Design of the regulator enables fitting of leaden seals to the adjustable parts after the desired settings are achieved.

INSTALLATION KIT:

The regulator is delivered along with a factory-made installation kit that includes necessary fittings to connect imimpulse lines (pipes) \emptyset 6 x 1. Connections for installation on a pipeline (e.g. mating flanges) can be delivered as supplementary fittings (upon a separate order).

Connection ty	pe	DN15	DN20	DN25	DN32
Stub pipe for welding		8520144000	8520145000	8520146000	8520147000
Threaded stub pipe		8520148000	8520149000	8520150000	8520151000
Elenne	PN16; PN25	8520136000	8520138000	8520140000	8520142000
rialige	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (pos. 05)		8121795000	8121796000	8121797000	8121798000

ORDER PLACEMENT

Orders must contain full name of the product, nominal diameter DN, flow coefficient K_{vs} , range of settings and fittings.

EXAMPLE OF THE PRODUCT CODE:

The pressure regulator, type ZSG, with permanent connection of the impulse line, nominal diameter DN25; KVS = 3.6; range of settings 20 ... 400 [kPa], with stub pipes for welding:

ZSG3.2-25-3,6-400-2

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS TYPE ZSG 5

APPLICATIONS:

Regulators ZSG5 are used to control preset pressure difference in process installations connected to inlet or outlet of regulator valve on supply or return of installation. Increase in pressure difference causes valve closure. Regulators are applied in heating systems, in industrial processes with cold and hot (up to 150°C) water and non-flammable gases (up to 80°C), at nominal pressures up to PN25. Using with other media subject to consulting with manufacturer.

CHARACTERISTICS:

- compact and rigid design, small size,
- high control precision,
- wide range of flow ratios K_{vs},
- variety of end connections, easy installation,
- · protected against hydraulic overloads,
- guaranteed internal and external tightness,
- · low-noise operation,
- high durability.

DESIGN:

Regulator comprises control valve (01) and hydraulic actuator (02), integrated in a single cast structural unit. Controlled value adjuster (03) is situated outside the actuator.

Valve - single-ported, with pressure balanced plug and tight closure. **Actuator** - diaphragm type, high strength diaphragm (effective area 40 cm²), protected against hydraulic overload.

End connections – welding, threaded or flanged end connections, as per PN, DIN, ISO, for pressure PN16 or PN25, and CL150 (available execution with no end-connections).

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Impulse of higher pressure from controlled pressure difference is transferred via impulse duct to actuator chamber, from spring side, and impulse of lower pressure difference - to actuator chamber from valve side. Increase in pressure above the preset value, set by tightening of spring in adjuster, causes pro rata closure of valve port until value of regulator pressure difference reaches the preset value.

VARIANTS:

ZSG 5.1 -	supply	mounted,	one permanent	connection	in h	nigher	pressure	impulse	regulator

- **ZSG 5.2** return mounted, one permanent connection in lower pressure impulse regulator;
- **ZSG 5.3** supply/return mounted, connection of two impulse ducts.

ECHNICAL SPECIFIC	ATIONS:				
DN nominal diameter		15 20		25	32
	full	3.6	5	7.2	10
K _{vs} flow ratio [m³/h]	reduced	2,5 1,6 1	3,6 2,5 1,6 1	5,7 3,6 2,5 1,6	7,2 5,7 3,6 2,5
Noise coefficient. Z		0,0	.6	0.55	5
Body connection diameter G		G 3/4	G 1	G 1 1/4	G 1 3/4
Pipe external diameter d. In	 1m]	21.3	26.9	33 7	42.4
End external diameter, d.	1	R 1/2	R 3/4	R 1	R 1 1/4
Wrench opening, S		32	41	50	60
	L [mm]	70	75	80	105
	L, [mm]	184	199	224	269
Body length	L[mm]	136	151	164	195
	L. PN/CL [mm]	130 / 184	150 / 184	160 / 184	180 / 200
	A [mm]	273	273	273	288
Height	B [mm]	36	36	38	49
	<u>842</u>				€
- welding ends		- threaded en	ds	flanged end	ls
ominal pressure:					
• body	- PN25			(
 Tranges 	- PN16; PN	25; CL150			22) A
 in valve 	- 16 [bar]				
 in actuator 	– 16 [bar]				
llowable medium tempe	erature:				
 fluids non-flammable gase etting range 	kPa] (green spring kPa] (yellow spring)	g) g)			
eakage class	– Class VI a	s per PN-EN 605	34-4		
ATERIALS					(03)
ody, cover	 spheroidal iroi 	n EN-GJS-400-18 SrNiMati17 12 27	LI 1 4571)		
5al	 – steer K.O.X0C – brass CuZn39)Ph3	1.4571)		
tem – prass cu2039		9PD3 of steel			
	X17CrNi16-2	(1.4057)			
lide sleeves	- PTFE lined st	eel			-
ternal springs	 stainless sprir 	ng steel 12R10			_@
djuster springs	 spring steel C 				
aphragm	- EPDM ¹⁾ with p	polyester fabric			
acking		on steel SZEE 120	23 (1 0570)		
special NBR variant for oils	 weidable carb or oily gases 	1011 SLEEL 3333J20	55 (1.0570)		

INSTALLATION

Regulator is to be installed on horizontal pipeline, spring down. Medium flow direction is to conform to arrow on body. Application of mesh filters upstream regulator is recommended.

For low-noise operation medium flow velocity is not to exceed 3 m/s for liquids and 12 m/s for gases. Regulator design allows establishment of leaden seal on elements used for setting of preset value.

Self-actuating differential pressure reducing regulators type ZSG 5
ACCESSORIES:

Regulator is delivered with respective couplings for impulse ducts (tubes) \emptyset 6x1. Additional, optional, accessories include connections to pipeline installation (e.g. counterflanges).

End connection type		DN15	DN20	DN25	DN32
Welding connection		8520144000	8520145000	8520146000	8520147000
Threaded connection		8520148000	8520149000	8520150000	8520151000
Flanged connection	PN16; PN25	8520136000	8520138000	8520140000	8520142000
	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (item 05)		8121795000	8121796000	8121797000	8121798000

ORDERING:

In your order specify product marking, DN nominal diameter, flow ratio Kvs, setting range and accessories.

EXAMPLE OF MARKING:

Differential pressure regulator type ZSG, supply mounted, nominal diameter DN25; K_{vs} =3,6; setting range 20...400 [kPa], welding connections.

ZSG5.1-25-3,6-400-2

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS WITH FLOW REDUCTION **TYPE ZSG 6**

APPLICATIONS:

Regulators are used to control preset pressure difference and to reduce flow in process installations connected to inlet of regulator valve on return of installation. Increase in pressure difference causes valve closure. Regulators are applied in heating systems, in industrial processes with cold and hot (up to 150°C) water and non-flammable gases (up to 80°C), at nominal pressures up to PN25. Using with other media subject to consulting with manufacturer.

CHARACTERISTICS:

- compact and rigid design, small size,
- high control precision,
- wide range of flow ratios K_{vs},
- variety of end connections, easy installation,
- · protected against hydraulic overloads,
- guaranteed internal and external tightness,
- low-noise operation,
- high durability,

DESIGN:

Regulator comprises control valve (01) and hydraulic actuator (02), integrated in a single cast structural unit. Regulator value adjuster (03) is situated outside the actuator, while flow reduction flap is integrated with the valve,

Valve - single-ported, with pressure balanced plug and tight shut-off, with flow reduction flap.

Actuator - diaphragm type, high strength diaphragm (effective area 40 cm²), protected against hydraulic overload.

End connections –welding, threaded or flanged end connections, as per PN, DIN, ISO, for pressure PN16 or PN25, and CL150 (available execution with no end-connections).

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Impulse of higher pressure difference from upstream installation subject to control to actuator chamber from spring side. Impulse of lower pressure difference via internal ducts from behind flap to actuator chamber from valve side. Increase in pressure above the preset value, set by tightening of spring in adjuster (03), causes pro rata closure of valve port until value of controlled pressure difference reaches the preset value. Increase in flow above the preset value, set by flap (04), causes increase in flow resistance and increase in pressure difference in actuator chambers, which in turn causes closure of valve seat until reaching flow value set using the flap.

	diamatar	40		05	
DN nominal	diameter	15	20	25	32
	full	3,6	5	7,2	10
K _{vs} flow ratio [m ³ /h]	reduced	2,5 1,6 1	3,6	5,7	7,2
Noise coefficient, Z	•	0	,6	0,55	
Body connection diameter,	G	G 3/4	G 1	G 1 1/4	G 1 3/4
Pipe external diameter, d, [[mm]	21,3	26,9	33,7	42,4
End external diameter, d,		R 1/2	R 3/4	R1	R 1 1/4
Wrench opening, S		32	41	50	60
	L ₀ [mm]	70	75	80	105
	L, [mm]	184	199	224	269
Body length	L, [mm]	136	151	164	195
	L, PN/CL [mm]	130 / 184	150 / 184	160 / 184	180/200
	A [mm]	250	250	250	265
Height	B [mm]	69	69	71	82
					N N N N
- welding ends		- threaded	l ends	- flange	d ends
 body flanges owable pressure drop in valve in actuator owable medium temp fluids non-flammable gas tting range 	 PN25 PN16; PN3 PN16; PN3 16 [bar] 16 [bar] 16 [bar] erature: +150 [°C] 80 [°C] 10100 [k 10200 [k 20400 [Class VI a steel K.O.X6CrN brass CuZn39F corrosion-proof 20400 [20400 [10200 [k 20400 [20400 [20400 [20400 [20400 [Steel K.O.X6CrN Steel K.O.X6CrN 20400 [20400 [25; CL150 (Pa] (green spring) (Pa] (yellow spring) kPa] (red spring) s per PN-EN 605 EN-GJS-400-18L liMoTi17-12-2 (1. b3 steel	g) (g) 34-4 .T 4571)		
tem - corrosion-proof steel X17CrNi16-2 (1.4057) lide sleeves - PTFE lined steel iternal springs - stainless spring steel 12R10 djuster springs - spring steel C iaphragm - EPDM ¹) with polyester fabric acking - EPDM ¹) nd connections - weldable carbon steel S355J2G3 (1.0570)					

INSTALLATION

Regulator is to be installed on horizontal pipeline, spring down. Medium flow direction is to conform to arrow on body. Application of strainers upstream regulator is recommended.

For low-noise operation medium flow velocity is not to exceed 3 m/s for liquids and 12 m/s for gases. Regulator design allows establishment of leaden seal on elements used for setting of preset value.

ACCESSORIES:

Regulator is delivered with respective couplings for impulse ducts (tubes) \emptyset 6x1. Additional, optional, accessories include connections to pipeline installation (e.g. counterflanges).

End connection type		DN15	DN20	DN25	DN32
Welding connection		8520144000	8520145000	8520146000	8520147000
Threaded connection		8520148000	8520149000	8520150000	8520151000
Flanged connection	PN16; PN25	8520136000	8520138000	8520140000	8520142000
	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (item 05)		8121795000	8121796000	8121797000	8121798000

ORDERING:

In your order specify product marking, DN nominal diameter, flow ratio $\rm K_{\rm vs},$ rangeability and accessories.

EXAMPLE OF MARKING:

Reduced flow differential pressure regulator type ZSG6, nominal diameter DN25; K_{vs} =3,6; setting range 20...400 [kPa], welding connections:

ZSG6-25-3,6-400-2

www.polna.com.pl

SELF-ACTUATING DIFFERENTIAL PRESSURE RELIEF REGULATORS TYPE ZSG 7

APPLICATIONS:

Regulators ZSG7 are used to control preset pressure difference in process installations connected to inlet of regulator valve. Increase in pressure difference causes valve closure. Regulators are applied in heating systems, in industrial processes with cold and hot (up to 150°C) water and non-flammable gases (up to 80°C), at nominal pressures up to PN25. Using with other media subject to consulting with manufacturer.

CHARACTERISTICS:

- compact and rigid design, small size,
- high control precision,
- wide range of flow ratios K_{vs},
- variety of end connections, easy installation,
- protected against hydraulic overloads,
- guaranteed internal and external tightness,
- low-noise operation,
- high durability.

DESIGN:

Regulator comprises control valve (01) and hydraulic actuator (02), integrated in a single cast structural unit. Controlled value adjuster (03) is situated outside the actuator.

Valve - single-ported, with pressure balanced plug and tight closure. **Actuator** - diaphragm type, high strength diaphragm (effective area 40 cm²), protected against hydraulic overload.

End connections – welding, threaded or flanged end connections, as

per PN, DIN, ISO, for pressure PN16 or PN25, and CL150 (available execution with no end-connections).

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Impulse of higher pressure from controlled pressure difference is transferred via impulse duct to actuator chamber, from valve side, and impulse of lower pressure difference – to actuator chamber from spring side. Increase in pressure above the preset value, set by tightening of spring in adjuster, causes pro rata closure of valve port until value of regulator pressure difference reaches the preset value.

VARIANTS:

ZSG 7.1 -	one permanent connection in higher and lower pressure impulse regulator,
ZSG 7.2 -	connection of two impulse ducts.

DN nominal	diameter	15	20	25	32
	full	3.6	5	72	10
		2 5	36	57	7.2
K _{vs} flow ratio [m ³ /h]	raducad	1,6	2,5	3,6	5,7
	Teduced	1	1,6	2,5	3,6
Noise coefficient 7		0,5	6	1,6	2,5
Body connection diameter. (3	G 3/4	,0 G 1	G 1 1/4	G 1 3/4
Pipe external diameter, d. [~ mml	21.3	26.9	33.7	42.4
End external diameter, d		R 1/2	R 3/4	R 1	R 1 1/4
Wrench opening, S		32	41	50	60
	L _n [mm]	70	75	80	105
	L ₁ [mm]	184	199	224	269
Body length	L ₂ [mm]	136	151	164	195
	L ₃ PN/CL [mm]	130 / 184	150 / 184	4 160 / 184	180 / 200
Height	A [mm]	273	273	273	288
Heigili	B [mm]	36	36	38	49
- welding ends		- threaded er	nds	- flanged	ends
minal pressure:					
body	- PN25				
lianges wable pressure drop	- PN10; PN	25, CL 150			772 B
in valve	– 16 [bar]				
in actuator	– 16 [bar]				
wable medium temp	erature:				\sim 05
fluids	– +150 [°C]				
non-flammable gas	es - +80[C]	(Dal (green sprin) 		
ang range.	- 10200 [k	(Pa] (vellow sprin	a) 1		
	– 20400 [k	(red spring)	0,		
akage class	 Class VI a 	s per PN-EN 605	34-4		
	anharaidal iran	EN C IS 400 101	т		(03)
at	– spheroluar Iron	NiMoTi17-12-2 (1	4571)		
a	- sider N.O.AUGHNIWUHT7-12-2 (1.4571) - brass CuZn39Pb3				
m	– corrosion-proof steel				3
X17CrNi16-2 (1.4057)					
le sleeves	- PTFE lined stee	el			~
ernal springs	springs – stainless spring steel 12R10				
uster springs	- spring steel C	hun ator fabri-			
pnragm		iyester fabric			
JUIN					
d connections	– weldahle carbo	n steel \$355 12C'	3 (1 0570)		

INSTALLATION:

Regulator is to be installed on horizontal pipeline, spring down. Medium flow direction is to conform to arrow on body. Application of mesh filters upstream regulator is recommended.

For low-noise operation medium flow velocity is not to exceed 3 m/s for liquids and 12 m/s for gases. Regulator design allows establishment of leaden seal on elements used for setting of preset value.

ACCESSORIES:

Regulator is delivered with respective couplings for impulse ducts (tubes) \emptyset 6x1. Additional, optional, accessories include connections to pipeline installation (e.g. counterflanges).

End connection type		DN15	DN20	DN25	DN32
Welding connection		8520144000	8520145000	8520146000	8520147000
Threaded connection		8520148000	8520149000	8520150000	8520151000
Flanged connection	PN16; PN25	8520136000	8520138000	8520140000	8520142000
	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (item 05)		8121795000	8121796000	8121797000	8121798000

ORDERING:

In your order specify product marking, DN nominal diameter, flow ratio K_{vs}, setting range and accessories.

EXAMPLE OF MARKING:

Differential pressure regulator type ZSG, permanent connection of higher pressure impulse, nominal diameter DN25; K_{vs} =3,6; setting range 20...400 [kPa], welding connections.

ZSG7.1-25-3,6-400-2

SELF-ACTUATING FLOW REGULATORS TYPE ZSG 8

APPLICATIONS:

Regulators ZSG8 are used to control preset flow rate in process installations. Increase in flow rate causes valve closure. Regulators are applied in heating systems, in industrial processes with cold and hot (up to 150°C) water and non-flammable gases (up to 80°C), at nominal pressures up to PN25. Using with other media subject to consulting with manufacturer.

CHARACTERISTICS:

- compact and rigid design, small size,
- high control precision,
- wide range of flow ratios K_{vs},
- variety of end connections, easy installation,
- · protected against hydraulic overloads,
- guaranteed internal and external tightness,
- low-noise operation,
- high durability.

DESIGN:

Regulator comprises control valve (01) and hydraulic actuator (02), integrated in a single cast structural unit. Pressure drop preset value spring (03) is situated inside the actuator, and flow rate setting flap (04) is part of the valve.

Valve - single-ported, with pressure balanced plug and tight closure, and gradual flow rate setting.

Actuators - diaphragm type, high strength diaphragm (effective area 40 cm²), protected against hydraulic overload.

End connections – welding, threaded or flanged end connections, as per PN, DIN, ISO, for pressure PN16 or PN25, and CL150 (available execution with no end-connections).

OPERATING PRINCIPLE

Regulator valve is open when no supply. Impulse of higher pressure from controlled pressure difference on flap (04) is transferred via impulse duct to external actuator chamber, whereas impulse of lower pressure via internal duct to actuator chamber from valve side. Regulator operation consists in measurement and control of permanent pressure difference on the flap of preset flow rate value adjuster. Increase in flow rate increase in pressure difference in actuator, and when such difference exceeds the preset value (20 or 50kPa), it causes a pro rata closure of valve port until value of regulator pressure difference reaches the preset value.

K _{vs} flow ratio [m³/h] loise coefficient, Z lody connection diameter, G	full	3,6 2,5	5	7,2	10
K _{vs} flow ratio [m³/h] loise coefficient, Z ody connection diameter, G	reduced	2,5	1	+	
oise coefficient, Z ody connection diameter, G		1,0	3,6	5,7	7,2
ody connection diameter, G		1	0.6		
		C 2/4	0,0	0	,00
ling avtornal diamotor d [mn	nl	01.2	26.0	22.7	42.4
nd external diameter d		R 1/2	20,9 B 3//	B 1	R 1 1//
Wrench opening S		32	41	50	60
vrench opening, o	L. [mm]	70	75	80	105
-	L. [mm]	184	199	224	269
ody length	L _o [mm]	136	151	164	195
-	L. PN/CL [mm]	130 / 184	150 / 184	160 / 184	180 / 200
	A [mm]	115	115	115	130
leight	<u>B [mm]</u>	69	69	71	82
Ø 118 - welding ends		-	threaded ends	- flan	iged ends
 body flanges lowable pressure dro in valve in actuator lowable medium temportation fluids non-flammable gate 	– PN25 – PN16; F – 16 [bar] – 16 [bar] perature: – +150 [°c ases – +80 [°C	PN25; CL150 C]]			04
Setting range of flow ratio, %	$\Delta p = 20 [kF]$ $K_{VS} \Delta p = 50 [kF]$	Pa] 4	.40 %		05
Minimum press	ure drop on valve	2	2 Δp		
eakage class ATERIALS ody, cover eat ug em ternal springs djuster springs djuster springs	 Class VI as p spheroidal in steel K.O.X6 brass CuZn3 corrosion-pro X17CrNi16-2 stainless spr stainless spr spring steel 0 	per PN-EN 6053 on EN-GJS-400 CrNiMoTi17-12 39Pb3 pof steel 2 (1.4057) ing steel 12R10 ing steel 12R10 C	 34-4)-18LT -2 (1.4571) □		

INSTALLATION

Regulator is to be installed on horizontal pipeline, spring down. Medium flow direction is to conform to arrow on body. Application of mesh filters upstream regulator is recommended.

For low-noise operation medium flow velocity is not to exceed 3 m/s for liquids and 12 m/s for gases. Regulator design allows establishment of leaden seal on elements used for setting of preset value.

ACCESSORIES:

Regulator is delivered with respective couplings for impulse ducts (tubes) Ø 6x1. Additional, optional, accessories include connections to pipeline installation (e.g. counterflanges).

End connection type		DN15	DN20	DN25	DN32
Welding connection		8520144000	8520145000	8520146000	8520147000
Threaded connection		8520148000	8520149000	8520150000	8520151000
Florged connection	PN16; PN25	8520136000	8520138000	8520140000	8520142000
Flanged connection	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (item 05)		8121795000	8121796000	8121797000	8121798000

ORDERING:

In your order specify product marking, DN nominal diameter, flow ratio K_{vs} , setting range and accessories.

EXAMPLE OF MARKING:

Flow regulator type ZSG8, nominal diameter DN25; K_{vs} =3,6; preset value 20 [kPa], welding connections.

ZSG8-25-3,6-20-2

www.polna.com.pl

SELF-ACTUATING DIFFERENTIAL PRESSURE AND FLOW REGULATORS TYPE ZSG 9

APPLICATIONS AREA:

Regulators ZSG 9 are used to control preset pressure difference and flow rate in process installations connected to valve inlet or outlet. Regulators are applied in heating systems, in industrial processes with cold and hot (up to 150°C) water and non-flammable gases (up to 80°C), at nominal pressures up to PN25. Using with other media subject to consulting with manufacturer.

CHARACTERISTICS:

- compact and rigid design, small size,
- high control precision,
- wide range of flow ratios K_{vs},
- variety of end connections, easy installation,
- · protected against hydraulic overloads,
- guaranteed internal and external tightness,
- · low-noise operation,
- high durability.

DESIGN:

Regulator comprises control valve (01) and two serially connected hydraulic actuators: flow actuator (06) and pressure difference actuator (07). Inside the actuator (06) there is a pressure drop preset value spring (07), situated on adjustable valve flap (04). Outside the actuator (02) there is a controlled pressure difference adjuster unit (03) installed. **Valve** - single-ported, with pressure balanced plug and tight closure, and gradual flow rate setting.

Actuators - diaphragm type, high strength diaphragm (effective area 40 cm²), protected against hydraulic overload.

End connections – welding, threaded or flanged end connections, as per PN, DIN, ISO, for pressure PN16 or PN25, and CL150 (available execution with no end-connections).

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Impulse of higher pressure is transferred to chamber further from the valve and lower pressure impulse to chamber nearer the valve. Impulses are collected from both sides of flap (04) to actuator (06), and from reduced pressure difference locations in installation to actuator (02). Regarding the designation of regulator – supply or return-mounted – majority of connections is executed permanently, using external duct or internal ducts of regulator. Increase in flow rate causes increase in pressure difference in actuator (02), and when such difference exceed preset value for spring (07), i.e. 20 or 50 kPa, it causes a pro rata closure of valve plug until flow rate value reaches preset value. Increase in controlled pressure difference above the preset value of adjuster (03), causes closure of valve plug until controlled pressure difference reaches preset value. Both control systems – flow rate and pressure difference – operate independently. Valve plug position is controlled by controlled value which deviates more from preset value.

VARIANTS: ZSG 9.1

ZSG 9.2

- supply-mounted,
- return mounted.

TECHNICAL SPECIFICATIONS:

Internal springs	_	stainless spring steel 12R10
Adjuster springs-	spring	steel C
Diaphragm	_	EPDM ¹⁾ with polyester fabric
Packing	_	EPDM ¹⁾
End connections	_	weldable carbon steel S355J2G3 (1.0570)
¹⁾ - special NBR variant	for oils o	or oily gases

INSTALLATION:

Regulator is to be installed on horizontal pipeline, spring down. Medium flow direction is to conform to arrow on body. Application of mesh filters upstream regulator is recommended. **For low-noise operation medium flow velocity is not to exceed 3 m/s for liquids and 12 m/s for gases.** Regulator design allows establishment of leaden seal on elements used for setting of preset value.

ACCESSORIES:

Regulator is delivered with respective couplings for impulse ducts (tubes) \emptyset 6x1. Additional, optional, accessories include connections to pipeline installation (e.g. counterflanges).

End connection type		DN15	DN20	DN25	DN32
Welding connection		8520144000	8520145000	8520146000	8520147000
Threaded connection		8520148000	8520149000	8520150000	8520151000
Flowed connection	PN16; PN25	8520136000	8520138000	8520140000	8520142000
rianged connection	CL150	8520137000	8520139000	8520141000	8520143000
Gasket (item 05)	0	8121795000	8121796000	8121797000	8121798000

ORDERING:

In your order specify product marking, DN nominal diameter, flow ratio K_{vs}, setting range and accessories.

EXAMPLE OF MARKING:

Flow regulator type ZSG, supply-mounted, nominal diameter DN25; K_{vs} =7,2; pressure difference spring range 10...100 [kPa], spring preset value 50 [kPa], welding connections.

ZSG9.1-25-7,2-100-50-2

SELF-ACTUATING PRESSURE REDUCING REGULATORS TYPE ZSN1

APPLICATION AREA:

Regulators ZSN1 are used to control preset pressure in process installations connected to regulator valve outlet. Regulators are applied in heating systems, in industrial processes with cold and hot water, steam, air and non-flammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and adjuster (03). Regulator valve single-ported with balanced plug. Flanged connections of valve body with valve face as per PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300.

Diaphragm actuator (diaphragm effective area 80 cm²), with clammed housing, or diaphragm actuator (diaphragm effective area 160 cm²), with bolted housing. Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VARIANTS:

By valve leakage class:

- below 0,01% K_{vs} (class IV as per PN-EN 60534-4) hard seat,
- bubble (class VI as per PN-EN 60534-4) soft seat PTFE or VMQ (ECOSIL).

By corrosion-proofness of actuator components:

- standard (ZSN 1.1) carbon steel with protection coatings,
- special (ZSN 1.2) stainless steel.

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Controlled pressure is fed via impulse duct through connection (24) onto diaphragm (29) of actuator (02). Second actuator chamber is connected to atmosphere via deaeration plug (25). Increase in control pressure above preset value, set by tensioning of spring unit (60) in adjuster (03), causes deflection of diaphragm, movement of actuator stem (37) and closure of valve plug (5) until controlled pressure reaches preset value on adjuster.

Controlled pressure impulse collection point is to be situated downstream regulator valve outlet.

DIMENSIONS AND WEIGHTS

DN	A	L	Valve weight (01)		
	[m	[kg]			
15		130	4,0		
20	470	150	5,1		
25		160	5,6		
32	485	180	8,5		
40	490	200	10,6		
50	495	230	14		
65	COE	290	23		
80	600	310	29		
100	615	350	44		
125	special execution, technical data				
150	according to individual inquiries				

			Weight				
Spring range	С	Diaphragm	Actuator (02)	Adjuster (03)			
[kPa]	[mm]	effective area[cm ²]		DN 1550	DN 65100		
40160	015	160	4,4	3,2	3,6		
100400	210			5,6	7,1		
200800	150	80	0.4	<u> </u>	0 5		
2801120	150	80	2,4	0,0	0,0		
other spring ranges available on request							

TECHNICAL SPECIFICATIONS

	DN	15	20	25	32	40	50	65	80	100	125	150
	full flow	3,2	5	8	12,5	20	32	50	80	125		
K _{vs} 1)		1	1,6	2,5							1.	
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50	tec	
		2,5	3,2	5								
	Stroke [mm]		6			8			12	14	<u></u>	
Noi	se coefficient Z	0,65	0,6	0,5	5	0,45	0,	4	0,3	35	dat	
Conti	rol characteristics		proportional									ds
Spri	ng range [kPa] ²⁾		401	60; 1	00400	; 2	00800;	28	01120		Ö	eci
Maximun	n pressure in actuator chamber [bar]		20									al exe
Allov	ved pressure drop	10						10			đ	ecu
i	n valve [bar]	12							10			tior
			valvo	e body in	grey iror	I		PN 16			vidu	2
Valve	e nominal pressure		valve b	ody in sph	eroidal i	ron		PN	16; PN 25;	PN 40	Ja	
		valve	valve body in carbon steel and stainless steel						16; PN 25;	PN 40	Inqu	
			water						000		lirie	
Ma	aximum medium			steam				200			s l	
ter	nperature [C]			gases				80			1	

 $^{\mbox{\tiny 1)}}$ other flow ratios $K_{\rm vs}$ subject to order specification.

²⁾ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 1.1	ZSN 1.2						
	VALVE (01)							
Body	grey iron EN-GJL-250 spheroidal iron EN-GJS-400-18LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)							
Plug and seat	V6CrNiMoTi 17	1.19.9 (1 4571)						
Guide sleeve	XOCINIMUTI II	-12-2 (1.45/1)						
Packing	Packing EPDM ³⁾							
	ACTUATOR (02)							
Housing	carbon steel \$235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)						
Stem	X17CrNi 16	-2 (1.4057)						
Diaphragm	EPDM + poly	ester fabric ³⁾						
Packing	EPI	DM ³⁾						
	Adjuster (03)							
Adjuster components	carbon steel	C45 (1.0503)						
Springs	Spring st	eel 60Si7						

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation of regulator apply strainer FS1 upstream, and needle valve ZWD 1 at impulse supply. When using regulators for steam applications condensation tank is required.

EXAMPLE OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately):

- strainer FS1,
- straight tube connection \varnothing 6×1,
- elbow tube connection \varnothing 6×1,
- connection stub NPT 1/4"
- impulse tube \emptyset 6×1,
- adjustment wrench,
- condensation tank,
- needle valve ZWD 1.

ORDERING

In your order specify type and marking, ZSN 1.1 or ZSN 1.2, DN nominal diameter, flow ratio K_{vs} , body material, spring range, tightness type (only orders for tight execution).

Example of order:

ZSN 1.2 - DN 40; PN 25; Kvs 20; spheroidal iron; 100...400 kPa; tight.

www.polna.com.pl

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS TYPE ZSN2

APPLICATION AREA:

Regulators ZSN2 are used to control preset pressure in process installations connected to regulator valve outlet. Regulators are applied in heating systems, in industrial processes with cold and hot water (150°C), air and non-flammable gases (80°C). Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and booster (06). Regulator valve single-ported with balanced plug. Flanged connections of valve body with valve face as per PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300.

Body length as per:

PN-EN 60534-3-1:2000 - Series 1 for PN10; 16; 25; 40;

Series 37 for CL150; Series 38 for CL300

Valve tightness – bubble (Class VI as per PN-EN 60534-4), tight seat in PTFE or VMQ (ECOSIL).

Diaphragm actuator (diaphragm effective area 160 cm²), with bolted housing and spring, pre-tensioned to 20 [kPa] for DN15...32 valves and to 50 [kPa] for DN40 and DN50 valves, inside. Diaphragm type booster comprises control pressure value adjuster.

VARIANTS:

By corrosion-proofness of actuator components:

- standard (ZSN 2.1) carbon steel with protection coatings,
- special (ZSN 2.2) stainless steel.

OPERATING PRINCIPLE:

Valve is open when no supply. Connection of regulator to system causes its opening. Controlled pressure is fed via impulse duct (110) to actuator (02) chamber above diaphragm (29) and via impulse duct (111) to booster (06) under diaphragm (83). Pressure from upstream valve is transferred via duct (112) to booster, and via pressure divider (94) through duct (113) under actuator diaphragm. Both pressures are collected via impulse tubes (112) and (111) directly from valve inlet and outlet flange. Increase in controlled pressure above preset value, set by tensioning of spring (89) in booster (06), causes increases in pressure in actuator chamber above the diaphragm (29), movement of actuator stem (49) and closure of valve plug (5) until controlled pressure reaches value preset in booster. To ensure reliable operation a minimum pressure difference in valve equal to double value of actuator spring pre-tensioning: 40[kPa] or 100 [kPa].

Self-actuating differential pressure reducing regulators Type ZSN 2

	DN	15	20	25	32	40	50				
	full flow	3,2	5	8	12,5	20	32				
K _{VS} ¹⁾		1	1,6	2,5							
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5				
		2,5	3,2	5							
	Stroke [mm]		6			8					
N	oise coefficient Z	0,65	0,6	0	,55	0,45	0,4				
Con	trol characteristics	Integrating									
Sp	oring range [kPa]	10100; 40400; 1001000									
Allowed pr	essure drop in valve [bar]	12									
Minimum p	ressure drop in valve [bar]		0,4			1					
			valve body ir	ı grey iron		PN 1	6				
Valv	e nominal pressure	1	alve body in sp	heroidal iron		PN 16; PN 2	25; PN 40				
		valve boo	dy in carbon ste	s steel	PN 16; PN 25; PN 40						
D.4i	ma diana tanàna matana (201		wate	er		150					
iviaximum	medium temperature [C]		dase	s		80					

 $^{1)}$ other flow ratios $K_{_{\rm VS}}$ subject to order specification.

MATERIALS as per PN

Regulator	ZSN 2.1	ZSN 2.2						
	VALVE (01)							
Body	grey iron EN-GJL-2 spheroidal iron EN- carbon steel GP240 stainless steel GX5	250 GJS-400-178LT DGH (1.0619) CrNiMo 19-11-2 (1.4408)						
Plug and seat	VCC-NiMoTi 1	7 10 0 (1 4571)						
Guide sleeve		-12-2 (1.4371)						
	ACTUATOR (02)							
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)						
Stem	X17CrNi 16	X17CrNi 16-2 (1.4057)						
Diaphragm	EPDM + poly	vester fabric ²⁾						
Packing	EPI	DM ²⁾						
	BOOSTER (06)							
Booster components	carbon steel X6CrN	liTi 18-10 (1.4541)						
Springs	spring st	eel 12R10						
Diaphragm	EPDM + poly	vester fabric ²⁾						
Packings	EPI	DM ²⁾						

²⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 100°C regulator position is optional, at higher temperatures it is recommended to install regulator with actuator unit (02) down. To ensure reliable operation of regulator apply strainer FS1 upstream.

EXAMPLES OF APPLICATION

ACCESSORIES

Optional (ordered separately):

- strainer FS1,
- straight tube connection \varnothing 6×1,
- elbow tube connection \varnothing 6×1,
- adjustment wrench,

ORDERING

In your order specify type and marking, ZSN 2.1 or ZSN 2.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, spring range.

Example of order:

ZSN 2.1 – DN 25; PN 16; K_{vs} 5; spheroidal iron; 40...100 kPa.

SELF-ACTUATING DIFFERENTIAL PRESSURE RELIEF REGULATORS TYPE ZSN3

APPLICATION AREA:

Regulators ZSN3 are used to control preset pressure in process installations connected to regulator valve inlet. Regulators are applied in heating systems, in industrial processes with cold and hot water, steam, air and nonflammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and adjuster (03). Regulator valve single-ported with balanced plug. Flanged connections of valve body with valve face as per PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300. Body length as per: PN-EN 60534-3-1:2000 – Series 1 for PN10; 16; 25; 40; Series 37 for CL150; Series 38 for CL300 Valve tightness – bubble (Class VI as per PN-EN 60534-4), tight seat in PTFE or VMQ (ECOSIL). Diaphragm actuator (diaphragm effective area 80 cm²), with clammed housing or diaphragm actuator (diaphragm effective area 160 cm²), with bolted housing. Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VARIANTS:

By corrosion-proofness of actuator components:

- standard (ZSN 3.1) carbon steel with protection coatings,
- special (ZSN 3.2) stainless steel.

OPERATING PRINCIPLE:

Valve is closed when no supply. Controlled pressure is fed via impulse duct through connection (24) under diaphragm (29) of actuator (02). Actuator second chamber is connected to atmosphere via deaeration plug (25). Increase in control pressure above preset value, set by tensioning of spring unit (60) in adjuster (03), causes deflection of diaphragm, movement of actuator stem (37) and opening of valve plug (5) until controlled pressure reaches value preset in booster.

Impulse collection point for controlled pressure is to be located upstream valve inlet.

TECHNICAL SPECIFICATIONS

	DN	15	20	25	32	40	50	65	80	100	125	150
	full flow	3,2	5	8	12,5	20	32	50	80	125		
K _{vs} ¹⁾		1	1,6	2,5							1	
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50		
		2,5	3,2	5								
	Stroke [mm]		6			8		1	2	14		s
No	oise coefficient Z	0,65	0,6	0,	55	0,45	0,	4	0,3	35		pec
Cont	trol characteristics				pr	oportional					rdin	ale
Spr	ing range [kPa] 2)		40	160;	100400;	200	.800;	28011	20		g to	Xeci
Maximur	m pressure in actuator chamber [bar]					20					indivi	ution,
Allov	wed pressure drop			1	2				10		dua	tech
	in valve [bar]				2				10		, ji	nnic
		valve body in grey iron					PN 16			quir	à	
Valve	e nominal pressure		valv	re body in s	pheroidal i	ron		PN 16; PN 25; PN 40			les	lata
		valve body in carbon steel and stainless steel					PN 16	5; PN 25; I	PN 40			
		water										
Ma	aximum medium			ste	am			- 200				
te	mperature [6]			gas	ses			80			1	

 $^{\rm 1)}$ other flow ratios $K_{_{\rm VS}}$ subject to order specification. $^{\rm 2)}$ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 3.1	Z\$N 3.2					
	VALVE (01)						
Body	grey iron EN-GJL-2 spheroidal iron EN- carbon steel GP24(stainless steel GX5	250 ·GJS-400-178LT)GH (1.0619) CrNiMo 19-11-2 (1.4408)					
Plug and seat	Y60rNiMoTi 1	7-19-9 (1 4571)					
Guide sleeve							
Packing	EPDM ³⁾						
	ACTUATOR (02)						
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)					
Stem	X17CrNi 16	5-2 (1.4057)					
Diaphragm	EPDM + poly	vester fabric ³⁾					
Packing	EPI	DM ³⁾					
	Adjuster (03)						
Adjuster components	carbon steel	C45 (1.0503)					
Springs	spring st	eel 60Si7					

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation of regulator apply strainer FS1 upstream and needle valve ZWD 1 at impulse collection point. When applying regulator for steam installation of condensation tank is recommended.

EXAMPLES OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately):

- strainer FS1,
- straight tube connection \varnothing 6×1,
- connection stub NPT 1/4"
- impulse tube \varnothing 6×1,
- adjustment wrench,
- condensation tank,
- needle valve ZWD 1.

ORDERING

In your order specify regulator type and marking, ZSN 3.1 or ZSN 3.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, spring range.

Example of order:

ZSN 3.1 – DN 32; PN 16; Kvs 8; spheroidal iron; 200...800 kPa.

www.polna.com.pl

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS TYPE ZSN5

APPLICATIONA AREA:

Regulators ZSN5 are used to control preset pressure in process installations connected to regulator valve inlet or outlet. Regulators are applied in heating systems, in industrial processes with cold and hot water, steam, air and non-flammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and adjuster (03). Regulator valve single-ported with balanced plug. Flanged connections of valve body with valve face as per

PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300.

Body length as per:

PN-EN 60534-3-1:2000 - Series 1 for PN10; 16; 25; 40;

Series 37 for CL150; Series 38 for CL300

Diaphragm actuator (diaphragm effective area 160 $\rm cm^2,\,320\,\rm cm^2),$ with bolted housing.

Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VAIANTS:

By valve leakage class:

- below 0,01% K_{vs} (class IV as per PN-EN 60534-4) hard seat,
- bubble (class VI as per PN-EN 60534-4) soft seat PTFE or VMQ (ECOSIL). By corrosion-proofness of actuator components:
- standard (ZSN 5.1) carbon steel with protection coatings,
- special (ZSN 5.2) stainless steel.

OPERATING PRINCIPLE:

Valve is open when no supply. Impulse of higher pressure is fed via impulse duct through connection (24) and above diaphragm (29) of actuator (02) from adjuster (03) side. Impulse of lower pressure is fed via impulse duct through connection (24) and below diaphragm. Increase in control pressure above preset value, set by tensioning of spring (60) in adjuster (03), causes deflection of diaphragm, movement of actuator stem (37) and closure of valve plug (5) until controlled pressure reaches value preset in adjuster. When regulator is installed on supply of installation, impulse collection points are to be situated downstream regulator valve outlet. When regulator is installed on return of installation, impulse collection points are to be situated upstream valve inlet.

DIMENSIONS AND WEIGHTS

	А	L	Valve weight					Weight		
DN			(01)	Spring range	C	Diaphragm effec-	Actuator	Adjus	ter (03)	
	[m	m]	[kg]	[кра]	[mm]	tive area[cm ²]	(02)	DN 1550	DN 65100	
15		130	4,0	10 40				24	28	
20	470	150	5,1	20 80	282	320	9,1	,.	,0	
25		160	5,6	40 160				3,2	3,6	
32	485	180	8,5	0100	215	160	4,4	5.0	6.2	
40	490	200	10,6	00320			l ilabla on ri	,0	0,3	
50	495	230	14		011			equest		
65	005	290	23							
80	605	310	29							
100	615	350	44							
125	specia	special execution, tec								
150	accor	ding to individu	al inquiries							

TECHNIC	CAL SPECIFICATI	ONS										
	DN	15	20	25	32	40	50	65	80	100	125	150
	full flow	3,2	5	8	12,5	20	32	50	80	125		
K _{VS} ¹⁾		1	1,6	2,5								
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50	tech	
		2,5	3,2	5								
	Stroke [mm]		6			8			12	14		
No	Noise coefficient Z		0,6	0,5	55	0,45	0,	4	0,3	35	data	
Cont	rol characteristics	proportional										ds
Spr	ing range [kPa] ²⁾		1	040;	2080;	401	60; 8	30320			ecia	ecia
Maximur	n pressure in actuator hamber [bar]	20									ding to	al exec
Allowed pre	essure drop in valve [bar]			12				10				ution
		valve body in grey iron							PN 16		/ vidu	_
Valve	nominal pressure		valv	e body in sp	heroidal ir	on		PN 16	6; PN 25;	PN 40	al ir	
		valve body in carbon steel and stainless steel						PN 16; PN 25; PN 40			Indri	
		steam									ries	
Maximum r	nedium temperature [°C]			wate	er			- 200				
				gase	s			80			1	

 $^{\rm 1)}$ other flow ratios $K_{_{\rm VS}}$ subject to order specification. $^{\rm 2)}$ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 5.1	ZSN 5.2				
	VALVE (01)					
Body	grey iron EN-GJL-2 spheroidal iron EN- carbon steel GP240 stainless steel GX5	:50 GJS-400-178LT)GH (1.0619) CrNiMo 19-11-2 (1.4408)				
Plug and seat	Y60rNiMaTi 17	(10.0.(1.4571)				
Guide sleeve	20CTN100TT 17	-12-2 (1.4571)				
Packing	g EPDM ³⁾					
	ACTUATOR (02)					
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)				
Stem	X17CrNi 16	-2 (1.4057)				
Diaphragm	EPDM + poly	vester fabric ³⁾				
Packing	EPI	DM ³⁾				
	Adjuster (03)					
Adjuster components	carbon steel	C45 (1.0503)				
Springs	spring st	eel 60Si7				

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation apply strainer FS1 upstream and needle valve ZWD 1 at impulse collection point. When applying regulator for steam installation of condensation tank is recommended.

INSTALLATION

- connection stub NPT 1/4"

- impulse tube \emptyset 6×1,
- adjustment wrench,
- condensation tank,
- needle valve ZWD 1.

ORDERING

In your order specify type and marking, ZSN 5.1 or ZSN 5.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, spring range, closure type (only for tight execution).

Example of order:

ZSN 5.2 - DN 50; PN 16; Kvs 32; spheroidal iron; 40...160 kPa, tight

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS WITH FLOW REDUCTION **TYPE ZSN6**

APPLICATION AREA:

Regulators ZSN6 are used to control preset pressure in process installations connected to regulator valve inlet. Regulators are applied in heating systems, in industrial processes with cold and hot water, steam, air and non-flammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and adjuster (03). valve single-ported with balanced plug and flow rate preset value adjuster in the form of gradually adjusted flap. Flanged connections of valve body with valve face as per PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300. Body length as per:

PN-EN 60534-3-1:2000 - Series 1 for PN10; 16; 25; 40;

Series 37 for CL150; Series 38 for CL300

Diaphragm actuator (diaphragm effective area 160 cm^2 , 320 cm^2), with bolted housing.

Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VARIANTS:

By valve leakage class:

- below 0.01%K_{vs} (class IV as per PN-EN 60534-4) hard seat,
- bubble (class VI as per PN-EN 60534-4) soft seat PTFE or VMQ (ECOSIL).
- By corrosion-proofness of actuator components:
- standard (ZSN 6.1) carbon steel with protection coatings,
- special (ZSN 6.2) stainless steel.

OPERATING PRINCIPLE:

valve is open when no supply. Impulse of higher pressure of controlled pressure difference is collected upstream controlled installation, via impulse duct, through connection (24) and above diaphragm (29) of actuator (02). Impulse of lower pressure of controlled pressure difference is collected from behind the flow reduction flap (12) and transferred through opening in seat (2) via impulse duct (114) below actuator diaphragm. Increase in control pressure above preset value, set by tensioning of spring (60) in adjuster (03), causes deflection of diaphragm, movement of actuator stem (37) and closure of valve plug (5) until controlled pressure reaches value preset in adjuster.

Increase in flow above the preset value, set by adjuster flap (12), causes increase in packing gland resistance and increase in pressure difference in actuator chambers, which in turn causes deflection of diaphragm, movement of stem and closure of valve plug until flow value as set by flap is reached. Needle valve (24A) enables choking and cutting off control pressure impulse, deaeration of actuator chamber, as well as protects diaphragm against hydraulic impacts.

DIMENSIONS AND WEIGHTS

DN	А	L	Valve weight (01)
DN	[m	m]	[kg]
15		130	4,0
20	470	150	5,1
25		160	5,6
32	485	180	8,5
40	490	200	10,6
50	495	230	14
65	COF	290	23
80	000	310	29
100	615	350	44

				Weight					
pring range	C [mm]	Diaphragm effec-	Actuator	Adjuster (03)					
10 /0			(02)	DN 1550	DN 65100				
1040	000	220		2,4	2,8				
2080	202	320	9,1	2.0	26				
40160	015	160	4.4	3,2	3,0				
80320	210	160	4,4	5,0	6,3				

TECHNIC	CAL SPECIFICATI	ON			1		1	1		ï
	DN	15	20	25	32	40	50	65	80	100
	full flow	3,2	5	8	12,5	20	32	50	80	125
K _{vs} ¹⁾		1	1,6	2,5						
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50
		2,5	3,2	5						
	Stroke [mm]		6			8		1	2	14
No	ise coefficient Z	0,65	0,6	0,	0,55 0,45 0,			,4 0,3		35
Cont	rol characteristics					proportional				
Spri	ing range [kPa] ²⁾			1040	; 208	0; 40	160; 8	0320		
Maximun c	n pressure in actuator hamber [bar]	20								
Allowed pre	essure drop in valve [bar]	12						10		
		valve body in grey iron						PN 16		
Valve	nominal pressure		V	alve body in	spheroidal iro	on		PN 1	6; PN 25; P	N 40
		valve body in carbon steel and stainless steel						PN 16; PN 25; PN 40		
		steam						000		
Maximum n	nedium temperature [°C]			Wa	ater		-	- 200		
				c n	202			80		

 $^{\rm 1)}$ other flow ratios $K_{_{\rm VS}}$ subject to order specification. $^{\rm 2)}$ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 6.1	ZSN 6.2
VALVE (01)		
Body	grey iron EN-GJL-250 spheroidal iron EN-GJS-400-178LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)	
Plug and seat	- X6CrNiMoTi 17-12-2 (1.4571)	
Guide sleeve		
Packing	EPDM ³⁾	
ACTUATOR (02)		
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)
Stem	X17CrNi 16-2 (1.4057)	
Diaphragm	EPDM + polyester fabric ³⁾	
Packing	EPDM ³⁾	
Adjuster (03)		
Adjuster components	carbon steel C45 (1.0503)	
Springs	spring steel 60Si7	

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation apply strainer FS1 upstream and needle valve ZWD 1 at impulse collection point.

EXAMPLES OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately):

- strainer FS1,
- straight tube connection \varnothing 6×1,
- connection stub NPT 1/4"
- impulse tube \varnothing 6×1,
- adjustment wrench,
- needle valve ZWD 1.

ORDERING

In your order specify type and marking, ZSN 6.1 or ZSN 6.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, spring range, closure type (only for tight executions).

Example of order:

ZSN 6.2 – DN 65; PN 16; Kvs 50; spheroidal iron; 40...160 kPa, tight.

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

SELF-ACTUATING DIFFERENTIAL PRESSURE RELIEF REGULATORS TYPE ZSN7

APPLICATION AREA:

Regulators ZSN7 are used to control preset pressure in process installations connected to regulator valve inlet. Regulators are applied in heating systems, in industrial processes with cold and hot water, steam, air and nonflammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporary fastened main units: valve (01), actuator (02) and adjuster (03). Regulator valve single-ported with balanced plug. Flanged connections of valve body with valve face as per PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300. Body length as per: PN-EN 60534-3-1:2000 – Series 1 for PN10; 16; 25; 40; Series 37 for CL150; Series 38 for CL300 Diaphragm actuator (diaphragm effective area 160 cm², 320 cm²), with bolted housing.

Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VARIANTS:

By corrosion-proofness of actuator components:

- standard (ZSN 7.1) carbon steel with protection coatings,
- special (ZSN 7.2) stainless steel.

OPERATING PRINCIPLE:

Regulator valve is closed when no supply. Impulse of higher pressure of controlled pressure difference is fed via impulse duct through connection (24) and below diaphragm (29) of actuator (02) from valve (01) side. Impulse of lower pressure of controlled pressure difference is fed via impulse duct through connection (24) and above diaphragm. Increase in control pressure above preset value, set by tensioning of spring (60) in adjuster (03), causes deflection of diaphragm, movement of actuator stem (37) and closure of valve plug (5) until controlled pressure reaches value preset in adjuster. Impulse collection point for impulse of higher pressure of controlled pressure is to be located upstream regulator valve inlet and collection point of lower pressure impulse - downstream regulator valve outlet.

DN	A	L	Valve weight (01)					
	[m	m]	[kg]					
15		130	4,0					
20	470	150	5,1					
25		160	5,6					
32	485	180	8,5					
40	490	200	10,6					
50	495	230	14					
65	COF	290	23					
80	600	310	29					
100	615	350	44					
125	specia	l execution, tec	hnical data					
150	accor	according to individual						

	0	Dianhrann affac	Weight							
[kPa]	0 [mm]	tive area[cm ²]	Actuator	Adjuster (03)						
լուսյ	[]		(02)	DN 1550	DN 65100					
1040	202	220	0.1	2,4	2,8					
2080	202	320	9,1	2.0	26					
40160	015	160	4.4	3,2	3,0					
80320	215	160	4,4	5,0	6,3					
	other spring ranges available on request									

	DN	15	20	25	32	40	50	65	80	100	125	150
	full flow	3,2	5	8	12,5	20	32	50	80	125		
K _{vs} ¹⁾ [m ³ /h]	reduced flow	1	1,6	2,5	E	0	10.5	00	20	50	te	
[111711]	reduced now	1,6 2,5	2,5 3,2	3,2 5	5	ŏ	12,0	20	32	50	chni	
	Stroke [mm]		6			8		1	2	14	Cal	
No	ise coefficient Z	0,65 0,6 0,55 0,45 0,4							0	,35	data	
Cont	rol characteristics		proportional									
Spri	ng range [kPa] 2)	1040; 2080; 40160; 80320								ecia		
Maximur c	n pressure in actuator hamber [bar]							ding to	ll exec			
Allowed pre	ssure drop in valve [bar]	12							10			
		valve body in grey iron							PN 16		vidu	
Valve	nominal pressure		valve	e body in s	pheroidal i	ron		PN 1	6; PN 25;	PN 40		
		valve body in carbon steel and stainless steel							6; PN 25;	PN 40	nqui	
		steam										
Maximum r	nedium temperature ['C]			wat	er			- 200				
				gas	es			80			1	

 $^{\rm 1)}$ other flow ratios $K_{\rm vs}$ subject to order specification. $^{\rm 2)}$ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 7.1	ZSN 7.2				
	VALVE (01)					
Body	grey iron EN-GJL-250 spheroidal iron EN-GJS-400-178LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)					
Plug and seat	VCC-NiMoTi 1	7.10.0 (1 4671)				
Guide sleeve		-12-2 (1.4571)				
Packings	EPI)M ³⁾				
	ACTUATOR (02)					
Housing	carbon steel \$235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)				
Stem	X17CrNi 16	6-2 (1.4057)				
Diaphragm	EPDM + poly	ester fabric ³⁾				
Packing	EPI)M ³⁾				
	Adjuster (03)					
Adjuster components	carbon steel	C45 (1.0503)				
Springs	spring st	eel 60Si7				

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation of regulator apply strainer FS1 upstream and needle valve ZWD 1 at impulse collection point. When applying regulator for steam installation of condensation tank is recommended.

EXAMPLES OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately):

- strainer FS1,
- straight tube connection \varnothing 6×1,
- connection stub NPT 1/4"
- impulse tube \varnothing 6×1,
- adjustment wrench,
- condensation tank,
- needle valve ZWD 1.

ORDERING

In your order specify regulator type and marking, ZSN 7.1 or ZSN 7.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, spring range.

Example of order:

Pressure regulator ZSN 7.1 – DN 15; PN 16; K_{vs} 32; spheroidal iron; 40...160 kPa.

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

SELF-ACTUATING FLOW REGULATORS TYPE ZSN8

APPLICATION AREA:

Regulators ZSN8 are used to control preset pressure in process installations. Regulators are applied in heating systems, in industrial processes with cold and hot water (150°C), air and non-flammable gases (80°C). Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises two main units: valve (01) and actuator (02). Regulator valve single-ported with balanced plug, and flow rate preset value adjuster in the form of gradually adjusted packing gland. Flanged connections of valve body with valve face as per

PN-EN 1092-1:2006 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300.

Body length as per:

PN-EN 60534-3-1:2000 - Series 1 for PN10; 16; 25; 40;

Series 37 for CL150; Series 38 for CL300

Diaphragm actuator (diaphragm effective area 160 cm²), with bolted housing and spring allowing to achieve preset pressure drop on adjuster packing gland of 20 [kPa] or 50 [kPa].

VARIANTS:

By valve leakage class:

- below 0.01%Kvs (class IV as per PN-EN 60534-4) hard seat,
- bubble (class VI as per PN-EN 60534-4) soft seat PTFE or VMQ (ECOSIL).

By corrosion-proofness of actuator components:

- standard (ZSN 8.1) carbon steel with protection coatings,
- special (ZSN 8.2) stainless steel.

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Regulator operation consists in measurement and control of permanent pressure difference on the packing gland (12) of value preset by medium flow. Controlled pressure difference is transferred to actuator via impulse ducts (115) "+", (116) "-", generates a force on actuator diaphragm (29) corresponding to actual controlled value, compared on actuator stem (47) with spring tension force (42). With change in flow rate, and consequential change in value of controlled pressure difference, force generate don diaphragm shall move the stem (47) with attached plug (5) until spring (42) tension force is compensated. This way flow rate is kept on constant level. Regulator does not require any additional impulse ducts. Total pressure drop in valve comprises pressure drop on packing gland and on plug.

DIMENSIONS AND WEIGHTS

DN	A	В	C	Diaphragm effective area [cm²]	L	Valve weight (01)
			[mm]			[kg]
15					130	9,3
20	295	90			150	10,4
25					160	10,9
32	315	98			180	14
40	320	110	215	160	200	16,3
50	325	120			230	20,3
65	265	265 142			290	29,5
80	305 151				310	37
100	370	185			350	52,5

	DN	15	20	25	32	40	50	65	80	100			
	full flow	3,2	5	8	12,5	20	32	50	80	125			
K _{vs}		1	1,6	2,5									
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50			
		2,5	3,2	5									
	Skok [mm]		6			8		1	2	14			
No	se coefficient Z	0,65	0,6	0	,55	0,45	0,	4	0,	35			
Conti	ol characteristics		proportional										
Spring rar	nge ∆p = 20 [kPa]					440 %K _{vs}	;						
% K _{vs}	∆p = 50 [kPa]				;								
Maximun C	n pressure in actuator hamber [bar]	20											
Allow i	ed pressure drop n valve [bar]			10									
Minim i	um pressure drop n valve [bar]	2 Δp (0,4 lub 1)											
		valve body in grey iron							PN 16				
Valve	nominal pressure		valve body in spheroidal iron							N 40			
			valve boo	PN 16; PN 25; PN 40									
Maximum	medium temperature		steam							150			
	[°C]			W	ater								
]			ga	ISES				80				

MATERIALS as per PN

Regulator	ZSN 8.1	ZSN 8.2				
	VALVE (01)					
Body	grey iron EN-GJL-250 spheroidal iron EN-GJS-400-178LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)					
Plug and seat	Xecrilimati	17 10 0 (1 4571)				
Guide sleeve	X0CINIMUTET7-12-2 (1.4371)					
Packings	E	PDM ¹⁾				
	ACTUATOR (02)					
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)				
Stem	X17CrNi	16-2 (1.4057)				
Spring	sprign	steel 60Si7				
Diaphragm	EPDM + p	olyester fabric ¹⁾				
Packing	E	PDM ¹⁾				

¹⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 130°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation of regulator apply strainer FS1 upstream.

EXAMPLES OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately): - strainer FS1.

ORDERING

In your order specify type and marking, ZSN 8.1 or ZSN 8.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , body material, pressure drop on packing gland (20 or 50 [kPa]), closure type (only for tight executions).

Example of order:

ZSN 8.1 – DN 40; PN 25; K_{vs} 20; spheroidal iron; 20 [kPa], tight.

SELF-ACTUATING DIFFERENTIAL PRESSURE AND FLOW REGULATORS **TYPE ZSN91**; **92**

APPLICATION AREA:

Regulators ZSN91; 92 are used to control preset pressure difference and flow in process installations connected to inlet or outlet of regulator valve. Regulators are applied in heating systems, in industrial processes with cold and hot, steam, air, and non-flammable gases. Using with other media subject to consulting with manufacturer.

DESIGN:

Regulator comprises three, temporarily connected, main units: valve (01), actuators (02A and 02B), and adjuster (03). Regulator valve single-ported with balanced plug, and flow rate preset value adjuster in the form of gradually adjusted packing gland. Flanged connections of valve body with valve face as per

PN-EN 1092-1:2010 and PN-EN 1092-2:1999 for PN10; 16; 25; 40 PN-EN 1759-1:2005 for CL150; CL300.

Body length as per:

PN-EN 60534-3-1:2000 - Series 1 for PN10; 16; 25; 40;

Series 37 for CL150; Series 38 for CL300

Diaphragm actuator (diaphragm effective area 160/160 cm² or 160/320 cm²), with bolted housing, where comparison of pressure difference impulses from controlled flow rate and controlled pressure difference is held.

Control pressure value adjuster with combination of three pre-tensioned springs, fixed coaxially with valve and actuator.

VARIANTS:

By application:

- on the supply side ZSN 91
- on the return side ZSN 92

By corrosion-proofness of actuator components:

- standard (ZSN 91.1; ZSN 92.1) carbon steel with protection coatings,
- special (ZSN 91.2; ZSN 92.2) stainless steel.

By pressure drop on packing gland:

- ∆p_D = 20 [kPa]
- ∆p_D = 50 [kPa]

OPERATING PRINCIPLE:

Regulator valve is open when no supply. Regulator controls flow comparing it with preset packing gland (12) value, and pressure difference, comparing it to preset adjuster (03) value. Both control systems – flow and pressure difference – operate independently. Plug position is determined by the value which deviates more from preset value. Flow control consists in presetting constant pressure difference of $\Delta p_D=20$ kPa or $\Delta p_D=50$ kPa, corresponding to desired flow, in packing gland (12), and transferring this pressure difference via impulse ducts to actuator (02A). Each change in flow rate exceeding desired value shall cause change in pressure difference regarding packing gland value and pro rata change in plug position, until flow rate reaches desired value.

Control of pressure difference Δp_R is achieved by presetting desired value of controlled pressure difference in adjuster (03) and transferring it via impulse ducts from measurement point to actuator (02B).

Each deviation from flow rate regarding adjuster value shall cause pro rata change in plug position, until controlled pressure difference reaches preset value.

Regulator only requires impulse tube for connection to lower or higher pressure, regarding installation method on supply or return pipeline, as per the diagram illustrating application examples hereinafter.

DIMENSIONS AND WEIGHTS

DN	Actuator type	А	В	С	Н	L	Valve weight(01)
DN	(02A and 02B)				[kg]		
15						130	4,2
20		655	90	015	80	150	5,3
25	160 160	0				160	5,9
32	100-160	670	98	210	95	180	8,9
40		675	110		100	200	11,2
50		680	120		105	230	15,4
65		725	142		145	290	24,4
80	160-320	755	151	282	145	310	31,9
100		740	185		150	350	47,7

	Actuator		Weight					
Spring range	(02A - 02B)	Actuator	Adjuster (03)					
[KPa]	effective area[cm ²]	(02A - 02B)	DN 1550	DN 65100				
40160			3,2	3,6				
80320	160-160	10	5,0	6,3				
120480			7,4	9				
1040	160.220	15	2,4	2,8				
2080	100-320	15	3,2	3,6				

	DN		15	20	25	32	40	50	65	80	100	
K _{vs} ¹⁾ [m ³ /h]	ful	flow	3,2	5	8	12,5	20	32	50	80	125	
	Skok [mm]			6			8		1	2	14	
	Noise coefficier	nt Z	0,65	0,6	0	55	0,45	0,	4	0,	35	
	Control character	istics					proportional					
	Spring range [k	Pa] 2)	1040; 2080; 40160; 80320,						, 120480			
low values for pressure drop in packing gland [bar]			12 10									
Seetin	g ranges for	$\Delta p_{D} = 20 [kPa]$					445% K _{vs}					
flow rate drop in	es by pressure packing gland	∆p _p = 50 [kPa]					775% K _{vs}					
			valve body in grey iron							PN 16		
	Valve nominal pre	ssure		N	alve body in	spheroidal iro	n		PN 1	6; PN 25; F	'N 40	
			valve body in carbon steel and stainless steel							6; PN 25; F	'N 40	
Maxim	um modium tomn	oratura ['C]	steam, water							150		
Maximum medium temperature [G]			gases							80		
Minimum pressure drop in valve						1	$\Delta p_z = \Delta p_D +$	$+\left(\frac{Q^2}{Kv^2}\right)$				

 $^{\mbox{\tiny 1)}}$ other K $_{\rm vs}$ ratios subjecto to order specification. $^{\mbox{\tiny 2)}}$ other ranges subject to order specification.

MATERIALS as per PN

Regulator	ZSN 91	ZSN 92				
	VALVE (01)					
Body	grey Iron EN-GJL-250 spheroidal iron EN-GJS-400-178LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)					
Plug and seat	Y60rNiMoTi 1	7-19-9 (1 4571)				
Guide sleeve	X00111101111712-2 (1. 1 011)					
Packings	EPI	DM ³⁾				
	ACTUATOR (02)					
Housing	carbon steel S235JRG2C (1.0122)	stainless steel X6CrNiTi 18-10 (1.4541)				
Stem	X17CrNi 16	6-2 (1.4057)				
Diaphragm	EPDM + poly	ester fabric33)				
Packing	EPI	DM ³⁾				
	Adjuster (03)					
Adjuster components	Carbon steel	C45 (1.0503)				
Springs	Spring st	eel 60Si7				

³⁾ other materials, subject to medium type.

INSTALLATION

Regulator is to be installed on horizontal pipeline. Medium flow direction is to conform to arrow on body. At medium temperature lower than 100°C regulator position is optional, at higher temperatures it is recommended to install regulator with adjuster unit (03) down. To ensure reliable operation of regulator apply strainer FS1 upstream.

EXAMPLES OF APPLICATION

ACCESSORIES

Delivered:

- nut and cutting ring for impulse tube,

Optional (ordered separately):

- strainer FS1,
- straight connection pipe \varnothing 6×1,
- elbow connection pipe \varnothing 6×1,
- connection stub NPT 1/4",
- impulse tube \varnothing 6×1,
- adjustment wrench,

ORDERING

In your order specify type and marking, ZSN91.1; ZSN91.2 or ZSN92.1 or ZSN92.2, DN nominal diameter, PN nominal pressure, flow ratio K_{vs} , packing gland pressure drop value, body material, spring range, closure type (only for tight executions).

Example of order:

ZSN91.2 - DN 50; PN 16; Kvs 32; 20 [kPa], spheroidal iron; 40...160 [kPa], tight.

STRAINERS FOR HEATING SYSTEMS TYPE FS-1

APPLICATION AREA:

The strainers are to be installed upstream the control appliance to purify fluids that flow through the circuits. They may be applied to heating systems as well as other industrial sectors.

DESIGN:

Strainers incorporate the following major components (Fig. 1): body (1), strainer insert (of mesh type) (2) and strainer cover (3). The upper part of the cylindrically wound insert, is introduced into the strainer body whereas its lower part rests on the strainer cover that acts simultaneously as a dirt trap. Both bodies and covers of the strainers are made of grey or spheroidal iron. The inserts (of mesh type) represent a unit that is composed of an enclosure, made of stainless steel and a mesh, weaved of stainless steel wires.

TECHNICAL PARAMETERS:

Flow coefficient K_{vs} vs. nominal diameter of the unit:

DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
Kvs	[m ³ /h]	7	11	12,5	20	32	50	82	125	190	320	500	800

Note: The flow coefficient does not depend on the strainer, as the freeflow are is constants (mesh wires with various diameters are used).

Marking of nominal pressure:

PN10; 16 - grey iron PN10; 16; 25- spheroidal iron,

Strainer mesh/cm ² :	15	25	45	100	230	300	400	600
Mesh size 🛱 [mm]	2	1,5	1	0,63	0,4	0,32	0,32	0,25

DIMENSIONS:

	Λ	R	D	z	[)	n x	d ₀		Weight
			PN16	PN25	PN16	PN25	PN16	PN25	L	weight
	[mm]							kg		
15	85	130	95	ō	6	5	4x	14	130 ± 1	3
20	113	155	10	5	7	5	4x	14	150 ± 1	4
25	113	155	11	5	8	5	4x	14	160 ± 1	5
32	115	183	14	0	10	00	4x18		180 ± 1	6
40	134	216	15	0	11	0	4x	18	200 ± 1.5	7
50	147	246	16	5	12	25	4x	18	230 ± 1.5	10
65	228	328	18	5	14	15	4x18	8x18	290 ± 1.5	17
80	240	400	20	0	16	60	8x	18	310 ± 1.5	22
100	280	480	220	235	180	190	8x18	8x22	350 ± 1.5	33
125	310	550	250	270	210	220	8x18	8x26	400 ± 1.5	40
150	350	600	285	300	240	250	8x22	8x26	480 ± 1.5	62
200	420	680	340	360	295	310	12x22	12x26	600 ± 1.5	140

INSTALLATION

Table 1. Material options

The strainers should be installed on a horizontal section of pipeline, flow direction must match the arrow on the strainer body. Installation on a vertical pipeline is allowed, when the handled fluid flows downwards. For DN200 its possible to produce PN10 (n=8, do=22) acc. to fig. 1.

Table 2 and 3. Allowable working pressures

Example:

Strainer with a draining valve in the strainer cover, DN50, nominal pressure PN16, strainer mesh: 300 meshes/ cm², material: spheroidal iron, working temperature below 150°C

FS-1S-DN50-PN16-ZS-300-2-1

ORDER PLACEMENT:

Orders must contain complete information that is necessary to select the strainer in accordance with the technical data questionnaire. To find out the most suitable strainer please refer to the staff of the Marketing and Sales Departments and Technical Department for assistance.

www.polna.com.pl

NEEDLE VALVES TYPE ZA

APPLICATION AREA:

The needle valves are designed for installation, startup and maintenance of pressure /flow converters, pressure gauges and other fittings and supplementary equipment in industrial automatic systems. Depending on their design version, the needle valve can be used for the following operations and procedures: on site or remote adjustment of instruments, enabling /disabling of flow, draining, venting or calibration of instruments, air purging of pipelines to expel contaminations.

FEATURES:

- high parameters of operating pressure and temperature,
- high tightness and reliability of valve closure,
- high resistance to external leaks,
- easy operation,
- purposeful selection of materials for parts and sealing to achieve versatility of application,
- wide choice of connection and design options,
- securing of the valve stem against sliding out during operation.

DESIGN:

Body	 material: carbon steel S355J2G3 (1.0570), stainless steel X6CrNiMoTi 17-12-2 (1.4571), inlet port (pipeline side): connecting nozzle - internal pipe thread, connecting nozzle - external pipe thread, outlet port (instrument side): direct connection (flange), connecting nozzle - internal pipe thread, connecting nozzle - internal metric thread, thread sizes: basic: NPT 1/4 "; 3/8"; 1/2", M 20 x 1,5, other diameters and thread sizes - upon request.
Gland	- material - the same as the valve body.
Stem	- acid resistant, burnished on the sealing surface, with rolled screw thread in the area where no contact with the handled utilities is anticipated, polished.
Needle	- two options: a hard one - stainless steel with further quenching or a soft one, made of PTFE, secured against revolving when engaged into the valve seat.
Gland sealing	- spring gasket made of acid resistant spiral tape and graphite.
Stem sealing	 PTFE packing, graphite; o-ring of EPDM - depending on specific application.
Protective sleev	ve – made of plastic for temperatures up to +150°C, it protects stem's thread from pollution and is used for marking the function of the valve: blue – a cutting-off valve; red – an air discharge valve.
Knob	– rod type, acid-resistant: for temperatures up to +150°C, there are grooves cut on the knob.

TECHNICAL PARAMETERS		
Maximum working pressure	- 400 bar.	
Throughout orifice diameter	- 4 mm.	
Maximum working temperature with regar	d to the type of sealing	
	- EPDM	150°C,
	- PTFE; VITON	200°C,
DESIGN OPTIONS:	- Graphite	500°C.

Inlet	Outlet	А
NPT 1/4"	NPT 1/4"	60
NPT 3/8"	NPT 3/8"	60
NPT 1/2"	NPT 1/2"	70
NPT 1/2"	M20x1,5	70

ZA - 11 - the single, 2-port needle valve, On/Off type with internal threads at both inlet and outlet.

ZA - 13 - the needle valve (same as ZA - 11) with vent and calibration.

ZA - 14 - the single, 2-port, needle valve, On/Off type with an externally tapped nozzle at inlet and internal thread at outlet

Inlet	Outlet	A	В	F
NPT 1/4"	NPT 1/4"	90	50	15
NPT 3/8"	NPT 3/8"	90	50	15
NPT 1/2"	NPT 1/2"	100	60	20

ZA - 16 - the needle valve (same as ZA-14) with vent and calibration.

Inlet	Outlet	А	В	С	Е
NPT 1/4"	NPT 1/4"	45	110	56	40
NPT 3/8"	NPT 3/8"	45	110	56	40
NPT 1/2"	NPT 1/2"	50	115	61	45
NPT 1/2"	M20x1,5	50	115	61	45

ZA - 17 - the single, 2-port, angular, needle valve, On/Off type with internal thread at both inlet and outlet.

Inlet	Outlet	А	В	С	Е
NPT 1/4"	NPT 1/4"	50	40	112	61
NPT 3/8"	NPT 3/8"	50	40	110	61
NPT 1/2"	NPT 1/2"	55	45	115	66
NPT 1/2"	M20x1,5	55	45	115	66

Inlet	Outlet	А	С	E	F
NPT 1/4"	NPT 1/4"	45	115	56	15
NPT 3/8"	NPT 3/8"	45	115	56	15
NPT 1/2"	NPT 1/2"	50	120	61	20
NPT 1/2"	M20x1,5	50	120	61	20

ZA - 19 - the single, 2-port, angular needle valve, On/Off type with an externally tapped nozzle at inlet and internal thread at outlet

Inlet	Outlet	А
NPT 1/4"	NPT 1/4"	100
NPT 3/8"	NPT 3/8"	100
NPT 1/2"	NPT 1/2"	105

ZA - 21 - the double needle valve with On/Off and venting function, with linear characteristic curve and internal threads at both inlet and outlet

Inlet	Outlet	A	F
NPT 1/4"	NPT 1/4"	105	15
NPT 3/8"	NPT 3/8"	105	15
NPT 1/2"	NPT 1/2"	110	20

ZA - 22 - the needle valve (same as ZA-21) with an externally tapped nozzle at inlet and internal thread at outlet,

Inlet	Outlet	G	Н
NPT 1/4"	flanged	16	5
NPT 1/2"	flanged	20	3

ZA - 23 - the double needle valve with On/Off and venting function, manifold type, with internal thread at inlet flange connection at outlet.

EXAMPLE OF THE PRODUCT CODE:

The double needle valve with linear characteristics, with NPT 1/4" internal threads at both inlet and outlet, stainless steel, for working temperature below 200°C:

ZA-21-K-1/1-2

ORDER PLACEMENT:

Orders must contain product codes in accordance with OEM data sheets, working parameters: pressures and temperatures of handled utilities.

Please do not hesitate to refer to the Marketing and Sales Department as well as the Technical Department for assistance to choose valves that suit your needs.

"POLNA" S.A. 37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

www.polna.com.pl

MANIFOLD VALVES TYPE ZB

APPLICATION AREA:

The manifold valves are designed for installation, startup and maintenance of pressure /flow converters, pressure gauges and other fittings and supplementary equipment in industrial automatic and tuning systems, thermal power engineering and other applications. They are used to connect instruments and fittings by means of pulse tubes and make it possible to cutoff (disable) hydraulic or pneumatic impulses, balancing (zeroing) or ventilation of instruments and purging of pipeline systems.

FEATURES:

- high parameters of operating pressure and temperature,
- high tightness and reliability of valve closure,
- easy operation,
- purposeful selection of materials for parts and sealing to achieve versatility of application,
- direct installation of instruments brings down total cost of the system and reduces number of locations with possible leaks,
- wide choice of connection,
- securing of the valve stem against sliding out during operation,
- possibility to connect heating appliances,
- distinguishable marking of on/of valves functionalities with colours,
- compact design owing to combining all the functions in a single unit.

DESIGN

Body	Mr. F
- material:	carbon steel S355J2G3 (1.0570)
	stainless steel X6CrNiMoTi 16-12-2 (1.4571)
 number of on/off valves 	3 or 5
 connecting ports 	direct (flanged)
	tubular
	via a straight connector
- facilities for heating	with /without an opening for heating appliances
Bonnet	- the same as the valve body,
Stem	- acid resistant, burnished on the sealing surface, with rolled screw thread in
the area where no contact with	the handled utilities is anticipated, polished.
Needle	-two options: a hard one – stainless steel with further quenching or a soft one,
made of PIFE, secured against	revolving when engaged into the valve seat.
Bonnet sealing	- spring gasket made of acid resistant spiral tape and graphite
Stem sealing	- PIFE packing, graphite; o-ring – depending on specific application
Handwheel	- I-snaped, stainless steel.
Protective sleeve	 made of plastic for temperatures up to +150°C, it protects stem's thread
	from pollution and is used for marking the function of the valve:
	blue – a cutting-off valve; red – an air discharge valve.
Knob	- rod type, acid-resistant: for temperatures up to +150°C, there are grooves
	cut on the knob.

DIMENSIONS

Table 1. Values of "A" for design options as on drawings 1+4

RECOMMENDED APPLICATION

The recommended design of cartridge valves: acid resistant materials for bodies, stem sealing of PTFE. Graphite sealing should be used only for the working temperature range +200 ... 500°C. Stem sealing with use of an o-ring as well as soft needle are recommended only for gaseous utilities.

The connected instrument should be sealed with use of either PTFE or graphite (for temperature range $+200 \dots 500^{\circ}$ C) sealing. All the fixing parts to attach the cartridge valve to the instrument (bolts, gaskets) are supplied upon separate order. The valve is attached to a piping component with use of mounting holes 3 x M8 (valves with a heating port) or 2 x M10 (other valves).

PRODUCT CODE

www.polna.com.pl

NEEDLE VALVES, TYPE ZWD1

APPLICATION AREA:

The needle valves are used in measuring systems, appliances for city heat engineering and industrial automatic systems. They enable pressure chocking, adjustment of flow intensity up to complete cutoff of the handled fluids.

DESIGN:

The valves are offered as either steel or corrosion resistant devices. They have the same connections, with notching rings for pipes of outer diameter $\emptyset 6$, $\emptyset 8$ or $\emptyset 10$ and wall thickness 1 mm at both inlet and outlet, or alternatively they may be equipped with a ball ending $\emptyset 12 \times 1.5$ at the inlet and a connection for aforementioned pipes at the outlet. The valve bonnet is welded to the valve body. In case of the steel body the body seat is surfaced with use of an stainless steel electrode, which improves the valve durability and prolongs its lifetime. The valve stem with the plug is made of stainless steel with further heat treatment (quenching). The parts that are exposed to the risk of corrosion are protected by appropriate coatings. The handwheel is made of a steel sheet and painted with epoxy, which facilitates quick operation of the valve.

Working temperature:

R6

R8

Κ

R10

-10...300 [°C] - for the steel body,

Example of the product code:

ball ending (\emptyset 12 x 1)

Type of inlet: pipe (\emptyset 6 x 1)

pipe (\emptyset 8 x 1)

pipe (Ø 10 x 1)

The steel needle value for a pipe \emptyset 6 x 1 at the outlet and the ball ending \emptyset 12 x 1.5 the inlet: **ZWD1 - 6 - K - S**

S

Ν

Design and dimensions of the valve

ORDER PLACEMENT:

Orders must contain full name of the valve and its product code, e.g. Needle valve ZWD1 - 6 - R6 - N

NEEDLE VALVES, TYPE ZWZ 11 and ZWZ 12

APPLICATION AREA:

The needle valves are used in measuring systems of level gauges, flow meters and other industrial automatic applications.

For instance, they can be used to disconnect the measuring circuit right at the tank where fluid level is measured inside or cutoff the measuring tube.

DESIGN:

The bodies of cut-off valves are manufactured in two material variations: carbon steel $(1.0570 - ZWZ \ 11 \ and \ ZWZ \ 12)$ and acid-resistant steel $(1.4571 - ZWZ \ 11)$. In ZWZ 11 valves, the body is welded together with a bonnet, while in ZWZ 12 valves, the body with bonnet is made from a forging.

Internal parts of cut-off valves in the carbon steel manufacture are made of stainless steel, and in acid-resistant valves, the parts directly coming into contact with an aggressive medium are made of acid-resistant steel, with the exception of the needle made of stainless steel, which is quenched and tempered.

In ZWZ 11 valves in the steel version, the seat is padded with the use of an acid-resistant electrode, and in ZWZ 12 valves, the seat is made of acid-resistant steel, quenched and tempered, and then screwed in the body.

The parts that are exposed to the risk of corrosion are protected by appropriate coatings. Ball endings of valves and connecting stubs are suitable for welding to pressurized pipes $\emptyset 12 \times 2 \text{ mm}$ (ZWZ 11) i $\emptyset 16 \times 3 \text{ mm}$ (ZWZ 12). The ergonomic handwheel are die pressed from steel sheets, which facilitates valve operation.

TECHNICAL PARAMETERS:

Working temperature: -10...+300 [°C] - for the steel body - S355J2G3 (1.0570), -196...+400 [°C] - for the acid resistant body - X6CrNiMoTi 17-12-2 (1.4571)

Material: S355J2G3 (1.0570) wg PN-EN 1092-1									
Temperature ['C]									
PN	20	50	100	150	200	250	300	350	400
Allowed working pressure [bar]									
PN160	160	160	148,5	140,9	133,3	121,9	110,4	-	-
PN320	320	320	297,1	281,9	266,6	243,8	220,9	-	-
PN350	400	400	325	308,3	291,6	266,6	241,6	-	-
Material: X6CrNiMoTi 17-12-2 (1.4571) wg PN-EN 1092-1									
	Temperature ['C]								
PN	20	50	100	150	200	250	300	350	400
Allowed working pressure [bar]									
PN160	160	160	160	156,9	149,3	141,7	133,3	128,7	124,9
PN320	320	320	320	313,9	298,6	283,4	266,6	257,5	249,9
PN350	350	350	350	343,3	326,6	309,9	291,6	281,6	273,3

Material for the	valve type	Type of connecting hozzles				
valve body	(product code)	Inlet	Outlet			
Carbon steel	ZWZ 11-1	with a ball ending and a nut				
	ZWZ 11-2	for a ball ending	with a ball ending and a nut			
	ZWZ 11-3	for welding				
	ZWZ 11-4	for welding	for welding			
	ZWZ 11-5	with internal thread NPT 1/4"	with internal thread NPT 1/4"			
	ZWZ 12-1	with internal thread G 1/2"	with internal thread G 1/2"			
	ZWZ 12-2	with a ball ending and a nut	with a ball ending and a nut			
Stainless steel	ZWZ 11-1-KO	with a ball ending and a nut				
	ZWZ 11-2-KO	for a ball ending	with a ball ending and a nut			
	ZWZ 11-3-KO	for welding				
	ZWZ 11-4-KO	for welding	for welding			
	ZWZ 11-5-KO with internal thread NPT 1/4"		with internal thread NPT 1/4"			
	ZWZ 12-1-KO	with internal thread G 1/2""	with internal thread G 1/2""			
	ZWZ 12-2-KO	with a ball ending and a nut	with a ball ending and a nut			

ORDER PLACEMENT:

Orders must contain full name of the valve and its product code, e.g. needle valve ZWZ 11 - 1 - KO

Certificate				
	Quality-Assurance System			
	acc. to Directive 97/23/EC			
Certificate no.:	01 202 PL/Q-02 0003			
Name and address of the manufacturer:	Zakłady Automatyki POLNA S. A. ul. Obozowa 23 37-700 Przemyśl Poland			
	Herewith we certify that the above mentioned manufacturer operates a quality system according to the European Directive 97/23/EC. The manufacturer has the permission to affix the following CE marking to pressure equipment described and manufactured in accordance to the scope covered by this Quality-Assurance System:			
	<€ 0035			
Tested acc. to Directive 97/23/EC:	QS-System (Modul H) (die QS-Module E1, E, D1 and D are performed by Modul H)			
Audit report no.:	210/A11/2756			
Area of validity:	Industrial valves and accessories, see annex to certificate			
Manufacturing plant:	Zakłady Automatyki POLNA S. A. ul. Obozowa 23 37-700 Przemyśl Poland			
Valid until:	September 30, 2014			
	Will Z			
Cologne, September 29, 2011	DrIng. W. Wichert			
TÜV Rheinland-Certification Body for Pressure Equipment TÜV Rheinland Industrie Service GmbH Notified Body, ID-No. 0035 Am Grauen Stein, D-51105 Köln				

E-014-Rev7

www.tuv.com

37-700 Przemyśl, Obozowa 23 Str E-mail: marketing@polna.com.pl Tel: +48 16 678 66 01 Fax: +48 16 678 65 24

Zawory z charakterem! Our valves have it!

- chemical industry
- petrochemical industry
- power industry
- ✓ gas industry
- ✓ heat industry

SINGLE-PORTED GLOBE CONTROL VALVES THREE-WAY CONTROL VALVES DOUBLE-PORTED CONTROL VALVES ROTARY PLUG CONTROL VALVES PISTON DESUPERHEATERS MINIMUM FLOW VALVES NEEDLE AND MANIFOLD VALVES SELF-ACTUATING PRESSURE REGULATORS