

SKRÓCONA INSTRUKCJA KORZYSTANIA Z PROGRAMU DOBORU ZAWORÓW DiVent

Instalacja:

- 1. setup.exe
- 2. wybrać C:\DiVent program utworzy katalog
- 3. Zainstalowany program utworzy w menu start zakładkę Polna S.A.

Korzystanie z programu:

1. menu Start – Programy – POLNA S.A. – DiVent (nr wersji programu)

Kliknąć w przycisk wskazany na ilustracji obok

Wstawić opis klienta oraz ustawić domyślne jednostki programu. (wypełnienie tego okna nie jest konieczne do dalszego korzystania z obliczeń)

3. Wstawianie zaworów do projektu:

2

°C

0.101325

•

Jednostki temperatury

Ciśnienie atmosferyczne [MPa]

Wybrać Zawory \rightarrow Dodaj zawór lub przycisk "+" aby wstawić zawór do projektu

		0	10	10		
	Właściwoś	ici zaworu			×	
	Nazwa:	LPG - 001			OK	L
	Opis:	Zawór regula	cyjny wody		Anuluj	┝
	Bodzai medi	j ium:		N		aw
_	Nadciśnieni	e [w. ci	oda ecz			F
_		pa pa	ara wodna ara, gaz			

Należy wypełnić pole "Nazwa:" oraz wybrać rodzaj medium. Wypełnienie pola "Opis" nie jest konieczne.

Rodzaj medium "ciecz" oznacza ciecz inną niż woda a "para, gaz" oznacza parę inną niż para wodna, lub gaz.

	0	0	0		
Właściwoś	ści zaworu				\mathbf{X}
Nazwa:	LPG - 001			OK	
Opis:	Zawór regula	cyjny gazu		Anuluj	
Rodzaj medi	ium: p	ara, gaz	•		aw
Nadciśnieni	e 🔽	k			
	0	0	0		

Zaznaczenie pola "Nadciśnienie" oznacza, że w obliczeniach wstawiamy ciśnienie manometryczne, w przeciwnym przypadku domyślnym jest ciśnienie bezwzględne.

4. Obliczanie i dobór zaworów.

Wpisać dane : przepływ (Q lub W), ciśnienie zasiania (p1), ciśnienie wylotowe (p2) i temperaturę medium (T1)

	own - finowa hindevr of					
Przyr:	ady Okno Pomoc					
6 🖻	a 🔁 💡					
_	Dane wejściowe					
	Punkty pracy:	🗹 1. 🔄 o	🗆 2. c o	🗌 3. c o		
	Przepływ (Q lub W)	10	0	0	t/h	•
7	Absolutne ciśnienie zasilania (p1)	25	0	0	bar	-
	Absolutne ciśnienie wylotowe (p2)	15	0	0	bar	-
	Temperatura medium (T1)	20	0	0	°C	-
-	Lepkość (ny)	0	0	0	сP	-
=	Gęstość robocza (rho1)	0	0	0	kg/m3	-
	Masa molowa (M)	0	0	0	kg/kmol	•
	Współczynnik ściśliwości (Z)	0	0	0		
	Stała Poissona (gama)	0	0	0		
	Współczynnik zaworu (FL)	0	0	0		
	Współczynnik zaworu (Fd)	0	0	0		
	Współczynnik zaworu (xT)	0	0	0		
-	Medium:				Wstawi	ć
	our :					

Następnie wpisać własności fizyczne medium lub wybrać medium z bazy mediów.

T	Nazwa PL	Nazwa EN	Wzór	C/G	Temperatura T1[°C]	Gęstość ro 📥 [kg/m3]	ОК
1	Acetylen	Acetylene	C2H2	G	0	0	Anuluj
T	Amoniak	Ammonia	NH3	G	0	0	
1	Argon	Argon	A	G	0	0	
1	Azot	Nitrogen	N2	G	0	0	
1	Chlorowodór	Hydrogen chloride	HCI	G	0	0	
1	Dwutlenek węgla	Carbon dioxide	C02	G	0	0	
1	Etan	Ethane	C2H6	G	0	0	
1	Etylen	Ethylene	C4H4	G	0	0	
1	Freon 11	Freon 11	CCI3F	G	0	0	
1	Gaz ziemny	Natural gas		G	0	0	
1	Hel	Helium	He	G	0	0	Dodać
1	Metan	Methane	CH4	G	0	0	
1	Powietrze	Air		G	0	0 _1	Poprawić
1	D	D	COLIO	C I	0	<u> </u>	11 4

UWAGA: Jeśli wybrano zawór dla gazu to będą dostępne do wyboru media gazowe (G w kolumnie C/G) jeśli zawór dla cieczy to media ciekłe (C).

_	_								
M	Medium używane do obliczeń 🛛 🔀								
[Nazwa PL	Nazwa EN	Wzór	C/G	Temperatura T1[°C]	Gęstość ro"▲ [kg/m3]		
		Amoniak - ciekły	Ammonia - liquid	NH3	С	20	610	Anuluj	
		Olej	Oil		С	40	840		
	_								
	_								
	_								
	-								
	+							Dodać	
	-								
	-							Poprawić	
	-								
l	•						<u> </u>	Usunąć	
	_								

Można dodawać nowe media do bazy mediów poprzez przycisk "Dodać" lub modyfikować ich dane poprzez przycisk "Poprawić" lub kasować je z bazy przyciskiem "Usunąć".

Dla zaworów regulujących wodę lub parę wodną po wprowadzeniu Q lub W, p1, p2 i T1 kliknąć "para" lub "woda" aby wprowadzić dane fizyczne medium.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m3/h ▼ ia (p1) 10 0 2 c o 0 3 c o m3/h ▼ ia (p2) 5 0 0 0 bar ▼ 30 0 0 0 0 °C ▼ sria (pv) 4.2415 0 0 0 kPa ▼ 30 0 0 0 °C ▼ sria (pv) 4.2415 0 0 kPa ▼ 30 0 0 0 kPa ▼ 396.05 0 0 0 kg/m3 ▼ y (cF) 1470 0 0 m/s ▼ 0.8 0 0 0 m/s ▼ 0.8 0 0 0 m/s ▼ 0.8 0 0 0 m/s ▼ 0.46 0 0 0						
Image: Second secon	······	0 0 0 0	0 0 0	0	Part	
Uruchomić obliczenia V1. 0 2. c 0 3. c 0 600 0 0 m3/h ia (p1) 10 0 0 bar we (p2) 5 0 0 °C						
V 1. 0 2. c 0 3. c o		Uruc	chomić oblicze	enia	Wprow	vadzenie danych dla wybranego medium
Image: state stat	1.2.1				· · · · · · · · · · · · · · · · · · ·	
		✓ 1	2. c o	3. c o		
ia (p1) 10 0 0 0 bar we (p2) 5 0 0 0 bar 		. 600	0	0	m3/h 💌	
we (p2)5 0 0 bar	ia (p1)	10	0	0	bar 💌	
30 0 0 °C 0.79728 0 0 cP ania (pv) 4.2415 0 0 kPa ne (pc) 22.12 0 0 MPa	ve (p2)	5	0	0	bar 💌	
		. 30	0	0	°C 💌	
nia (pv)		0.79728	0	0	cP 🔻	
ne (pc) 22.12 0 0 MPa 	ania (pv)	4.2415	0	0	kPa 💌	
	ne (pc)	22.12	0	0	MPa 🚽	
y (cF)		996.05	0	0	kg/m3 💌	
0.8 0 0 0.46 0 	y (cF)	. 1470	0	0	m/s 💌	
0.46 0 0 a zaworu (xFz) 0.5 0 <th></th> <th>0.8</th> <th>0</th> <th>0</th> <th></th> <th></th>		0.8	0	0		
3 zaworu (xFz) 0.5 0 0 0		0.46	0	0		
Wprowadzenie danych dla wybranego medium	3 zaworu (xFz)	0.5	0	0		
Wprowadzenie danych dla wybranego medium					Woda	
		Un	uchomić oblic:	zenia	Wprowadz	enie danych dla wybranego medium

W celu wstępnego obliczenia współczynnika przepływu (Kv) nacisnąć przycisk "Uruchomić obliczenia". Program obliczy współczynnik obliczeniowy Kv oraz poda wstępną informację o rodzaju przepływu.

Obliczenia	un Din	ichomić oblicz	enia	
Wyniki obliczeń Współczynnik przepływu (Kv)	345.73	0	0	m3/h
Skok	0 Normalny	0	0	%
Prędkość wylotowa	.0	0	0	m/s
Redukcja hałasu izolacją	0	0	0	dB(A)

Dobrać serię zaworów poprzez kliknięcie w przycisk "Typoszereg" i wybór odpowiedniej serii z listy.

	Prędkość dźwięku w cieczy (cF) 1470	0
- Charakterystyki zaworu	Wybór typoszeregu zaworów	
Typoszereg		
<u>Lyp</u> Charakterystyka	10 000 [Zawór dwugniazdowy]	ОК
Współczynnik przepływu Kvs	BR33 (FTO; grzyb obrotowy)	Anuluj
Średnica włotu zaworu d [mm]	Z (FTO, możliwość odciążenia)	
Srednica wylotu zaworu D (mm).	Z1A (FTO; grzyb profilowy)	ze
Rurociąg	Z1B (FTU; klatkowy; możliwość odciążenia) Z3 (Trójdrogowy; mieszający lub rozdzielający)	
Rurociąg znormalizowa	7CNI1 (Deculator ciónionia za zaucrom D2)	
Średnica na włocie D1 [mm]	. 0 Skok	
Średnica na wylocie D2 [mm]	. 0 Rodzaj przepływu Norm	alny

Dobrać Kvs, DN oraz charakterystykę zaworu poprzez kliknięcie przycisku "Typ".

	Uspółczynnik zaworu	ı (Fd)			
	Wybór zaworu				
Średnica wlot	Kvs: DN: Charakterystyka: Kvsmin	ОК			
Średnica wylc	Obliczenie Kv:	Anuluj			
Rurociąg —	Kv1 = 345.73;	Wszystkie			
Ruro					
Średnica na włocie D1 [mm]					
A	ulusia DO fasal DO Padasi prosphumu	Γ			

UWAGA: Program sugeruje wybór współczynnika przepływu oraz charakterystyki zaworu. Wybór innych współczynników Kvs i charakterystyk jest możliwy po kliknięciu w przycisk "Wszystkie".

Po wybraniu zaworu kliknąć powtórnie w przycisk "Uruchomić obliczenia" w celu wprowadzenia danych zaworu do obliczeń.

W celu obliczenia hałasu należy wprowadzić dane o średnicy i grubości rurociągu na którym zawór jest zamontowany wpisując je ręcznie lub wybierając rurociąg znormalizowany.

Średnica wylotu zaworu D [mm] 250		
Średnica wylotu zaworu D [mm] 250 Rurociąg Rurociąg znormaliz wany Średnica na wlocie D1 [mm] 0 Średnica na wylocie D2 [mm] 0 Grubość ścianki na wlocie ti [mm]. 0 Grubość ścianki na wylocie tp 0	Wybór znormalizowanego rurociągu Rurociąg na włocie Norma: Średnica nominalna: Ciśnienie nomin.: Wybór Średnica wewnętrzna: Grubość: O	1
Redukcja hałasu poprzez izolację 0	Rurociąg na wylocie Norma: Średnica nominalna: Ciśnienie nomin.: Wybór V V Średnica wewnętrzna: Grubość: 0 0	

Po wybraniu rurociągu ponownie kliknąć w "Uruchomić obliczenia" w celu uaktualnienia wyników obliczeń.

Program DiVent umożliwia obliczenie dla trzech punktów pracy zaworu: przepływu maksymalnego, średniego i minimalnego. Wypełnienie wszystkich trzech punktów pracy pozwala na prawidłowe dobranie zaworu w całym zakresie jego pracy.

Punkty pracy:	🗹 1. 🛛 🛛	✓ 2. c o	🗹 3. c o	
Przepływ (Q. lub W)	. 400	300	200	m3/h 💌
Absolutne ciśnienie zasilania (p1)	10	10	10	bar 💌
Absolutne ciśnienie wylotowe (p2)	7	5	4	bar 💌
Temperatura medium (T1)	30	30	30	°C 🔻
Lepkość (ny)	0.79728	0.79728	0.79728	cP 🔻
Absolutne ciśnienie parowania (pv)	4.2415	4.2415	4.2415	kPa 💌
Absolutne ciśnienie krytyczne (pc)	22.12	22.12	22.12	MPa 💌
Gęstość robocza (rho1)	.996.05	996.05	996.05	kg/m3 💌
Prędkość dźwięku w cieczy (cF)	1470	1470	1470	m/s 💌
Współczynnik zaworu (FL)	0.905	0.919	0.927	
Współczynnik zaworu (Fd)	0.06	0.079	0.102	
Graniczny spadek ciśnienia zaworu (xFz)	0.777	0.703	0.663	
Medium:				Woda
- Obliczenia	[:::::::::::::::::::::::::::::::::::::			1
	<u> Ur</u> t	ICHOMIC ODIICZ	enia	
– Wyniki obliczeń – Współczynnik przepływu (Kv)	230.49	133.9	81.489	m3/h
Skok	88.7	51.5	31.3	%
Rodzaj przepływu	Normalny	Normalny	Normalny	
Prędkość wylotowa	. 2.264	1.698	1.132	m/s
Redukcja hałasu izolacją	0	0	0	dB(A)
Poziom ciśnienia akust. (LpAe, 1 m)	75.8	76.77	75.8	dB(A)

Po skończeniu obliczeń zaworu można do projektu dodawać kolejne zawory stosując powyższą procedurę. Przełączanie się pomiędzy poszczególnymi zaworami w obrębie projektu możliwe jest poprzez wybieranie ich z listy jak na ilustracji poniżej.

Dostępne są wydruki obliczeń w języku polskim i angielskim. Z listy zaworów wybieramy język wydruku oraz zawór którego obliczenia chcemy wydrukować.

POLNA S.A.	(DiVent)		
OBLICZENIE ZAWORU REGU			
KLIENT PROJEKT OPIS DATA	5. 5. 1.	Klient 001 ZA POLNA S.A. Przemyśl 27.09.2005 / 17:51	
RODZAJ MEDIUM	1	WODA	
Opis zaworu	:	WODA 01	
Opis zaworu	÷	Zawór regulacyjny wodny	
Typoszereg zaworu	:	Z1A	
Rodzaj zaworu	:	FTO; grzyb perforowany	
Charakterystyka zaworu	-	LIN	
Średnica włotu zaworu	÷	150 mm	
Średnica wylotu zaworu	:	150 mm	
Współczynnik przepływu Kvs	56	260 m³/h	
Rurociąg:			
Średnica wewnętrzna rury wlotowej		159.3 mm	5
Grubość ścianki rury wlotowej	•	4.5 mm	<u>لا</u>
Średnica wewnętrzna rury wylotowej	v.	159.3 mm	
Grubość ścianki rury wylotowej	1	4.5 mm	

	Jedn.	Punkt I	Punkt II	Punkt III
Przepływ Q	m³/h	400		
Absolutne ciśnienie zasilania p1	bar	10		
Absolutne ciśnienie wylotowe p2	bar	7		
Temperatura medium T1	°C	30		
Lepkość ny	сР	0.79728		
Absolutne ciśnienie parowania pv	kPa 🛵	4.2415		
Absolutne ciśnienie krytyczne pc	MPa	22.12		
Gęstość robocza rho1	kg/m³	996.05		
Prędkość dźwięku w cieczy cF	m/s	1470		
Współczynnik zaworu FL	-	0.905		
Współczynnik zaworu Fd	-	0.06		
Graniczny spadek ciśnienia zaworu (xFz)	-	0.777		
Współczynnik przepływu Kv	m³/h	230.63		
Wybrany współczynnik przepływu Kvs	m³/h	260		
Skok	%	88.7		
Rodzaj przepływu	-	Normalny		
Prędkość wylotowa	m/s	6.288		
Redukcja hałasu izolacją	dB(A)	0		
Poziom ciśnienia akust. LpAe, 1 m	dB(A)	74.55		

Obliczenia wykonane wg. IEC 60534-2-1:1998 a IEC 60534-8-4:1994

DiVent 1.3

UWAGA:

Program pozwala dobierać zawory dla typowych zastosowań. Kiedy warunki przepływu są trudne i występują zjawiska kawitacji, flashingu, przepływu zdławionego lub nadmiernej emisji hałasu – program wyświetla stosowny komunikat zalecający kontakt z producentem w celu dobrania konstrukcji zaworu najlepiej dostosowanej do warunków przepływu.

